时间与空间复杂度解析

本文详细解析了时间复杂度和空间复杂度的概念,介绍了大O符号表示法,并列举了常见的时间复杂度量级,如常数阶、线性阶、对数阶等。同时,通过具体示例阐述了不同复杂度对应的算法类型,以及如何计算空间复杂度。

文章转载于:https://blog.youkuaiyun.com/haha223545/article/details/93619874 仅作为学习

一、说明

时间复杂度和空间复杂度是用来评价算法效率高低的2个标准,身为开发者肯定会经常会听到这2个概念,但它们分别是什么意思呢?

其实这两个概念从字面意思上也能看出一二:

  • 时间复杂度:就是说执行算法需要消耗的时间长短,越快越好。比如你在电脑上打开计算器,如果一个普通的运算要消耗1分钟时间,那谁还会用它呢,还不如自己口算呢。
  • 空间复杂度:就是说执行当前算法需要消耗的存储空间大小,也是越少越好。本来计算机的存储资源就是有限的,如果你的算法总是需要耗费很大的存储空间,这样也会给机器带来很大的负担。

二、时间复杂度的计算

表示方法

我们一般用“大O符号表示法”来表示时间复杂度:T(n) = O(f(n))
n是影响复杂度变化的因子,f(n)是复杂度具体的算法。

常见的时间复杂度量级

  • 常数阶O(1)
  • 线性阶O(n)
  • 对数阶O(logN)
  • 线性对数阶O(nlogN)
  • 平方阶O(n²)
  • 立方阶O(n³)
  • K次方阶O(n^k)
  • 指数阶(2^n)

接下来再看一下不同的复杂度所对应的算法类型。

常数阶O(1)

int a = 1;
int b = 2;
int c = 3;

我们假定每执行一行代码所需要消耗的时间为1个时间单位,那么以上3行代码就消耗了3个时间单位。那是不是这段代码的时间复杂度表示为O(n)呢 ?
其实不是的,因为大O符号表示法并不是用于来真实代表算法的执行时间的,它是用来表示代码执行时间的增长变化趋势的。
上面的算法并没有随着某个变量的增长而增长,那么无论这类代码有多长,即使有几万几十万行,都可以用O(1)来表示它的时间复杂度。

线性阶O(n)

for(i=1; i<=n; i++) {
   j = i;
   j++;
}

看这段代码会执行多少次呢?
第1行会执行1次,第2行和第3行会分别执行n次,总的执行时间也就是 2n + 1 次,那它的时间复杂度表示是 O(2n + 1) 吗? No !
还是那句话:“大O符号表示法并不是用于来真实代表算法的执行时间的,它是用来表示代码执行时间的增长变化趋势的”。
所以它的时间复杂度其实是O(n);

对数阶O(logN)

int i = 1;
while(i < n) {
    i = i * 2;
}

可以看到每次循环的时候 i 都会乘2,那么总共循环的次数就是log2n,因此这个代码的时间复杂度为O(logn)。
这儿有个问题,为什么明明应该是O(log2n),却要写成O(logn)呢?
其实这里的底数对于研究程序运行效率不重要,写代码时要考虑的是数据规模n对程序运行效率的影响,常数部分则忽略,同样的,如果不同时间复杂度的倍数关系为常数,那也可以近似认为两者为同一量级的时间复杂度。

线性对数阶O(nlogN)

for(m = 1; m < n; m++) {
    i = 1;
    while(i < n) {
        i = i * 2;
    }
}

线性对数阶O(nlogN) 其实非常容易理解,将时间复杂度为O(logn)的代码循环N遍的话,那么它的时间复杂度就是 n * O(logN),也就是了O(nlogN)。

平方阶O(n²)

for(x=1; i <= n; x++){
   for(i = 1; i <= n; i++) {
       j = i;
       j++;
    }
}

把 O(n) 的代码再嵌套循环一遍,它的时间复杂度就是 O(n²) 了。

立方阶O(n³)、K次方阶O(n^k)

参考上面的O(n²) 去理解就好了,O(n³)相当于三层n循环,其它的类似。

三、空间复杂度计算

空间复杂度 O(1)

如果算法执行所需要的临时空间不随着某个变量n的大小而变化,即此算法空间复杂度为一个常量,可表示为 O(1)。

int i = 1;
int j = 2;
++i;
j++;
int m = i + j;

代码中的 i、j、m 所分配的空间都不随着处理数据量变化,因此它的空间复杂度 S(n) = O(1)。

空间复杂度 O(n)

int[] m = new int[n]
for(i=1; i <= n; ++i) {
   j = i;
   j++;
}

这段代码中,第一行new了一个数组出来,这个数据占用的大小为n,后面虽然有循环,但没有再分配新的空间,因此,这段代码的空间复杂度主要看第一行即可,即 S(n) = O(n)。

总结

评价一个算法的效率主要是看它的时间复杂度和空间复杂度情况。可能有的开发者接触时间复杂度和空间复杂度的优化不太多(尤其是客户端),但在服务端的应用是比较广泛的,在巨大并发量的情况下,小部分时间复杂度或空间复杂度上的优化都能带来巨大的性能提升,是非常有必要了解的。

内容概要:本文详细介绍了“秒杀商城”微服务架构的设计实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值