Android GUI之View测量

  在上篇文章(http://blog.youkuaiyun.com/jerehedu/article/details/47081849)中,根据源码探索了View的绘制过程,过程有三个主要步骤,分别为测量、布局、绘制。系统对绘制已经做了很好的封装,我们主要对测量和布局过程进行分析,看一看android是如何对view进行测量和布局的。

  根据上篇文章的分析,我们知道在ViewRootImpl的performMeasure方法中,实际上调用了mView.measure(childWidthMeasureSpec, childHeightMeasureSpec);方法。根据源码我们找到了该方法的原型,此方法在View类中,并且是final方法,不可被子类重写,方法的具体源码如下:

public final void measure(int widthMeasureSpec, int heightMeasureSpec) {
        boolean optical = isLayoutModeOptical(this);
        if (optical != isLayoutModeOptical(mParent)) {
          ……
        }
        // Suppress sign extension for the low bytes
        long key = (long) widthMeasureSpec << 32 | (long) heightMeasureSpec & 0xffffffffL;
        if (mMeasureCache == null) mMeasureCache = new LongSparseLongArray(2);

        if ((mPrivateFlags & PFLAG_FORCE_LAYOUT) == PFLAG_FORCE_LAYOUT ||
                widthMeasureSpec != mOldWidthMeasureSpec ||
                heightMeasureSpec != mOldHeightMeasureSpec) {

           ……
            if (cacheIndex < 0 || sIgnoreMeasureCache) {
                // measure ourselves, this should set the measured dimension flag back
                onMeasure(widthMeasureSpec, heightMeasureSpec);
                mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
            } else {
                long value = mMeasureCache.valueAt(cacheIndex);
                // Casting a long to int drops the high 32 bits, no mask needed
                setMeasuredDimensionRaw((int) (value >> 32), (int) value);
                mPrivateFlags3 |= PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
            }
……

            mPrivateFlags |= PFLAG_LAYOUT_REQUIRED;
        }

        mOldWidthMeasureSpec = widthMeasureSpec;
        mOldHeightMeasureSpec = heightMeasureSpec;

        mMeasureCache.put(key, ((long) mMeasuredWidth) << 32 |
                (long) mMeasuredHeight & 0xffffffffL); // suppress sign extension
    }

  根据方法内容和说明,可以知道本方法就是用来测量View的大小的,而需要的两个参数是由父View构建的,用于说明父View对子View的测量的规格要求,实际上在这个方法中真正完成测量大小的是方法onMeasure,此方法我们稍后分析。在此之前我们先要明白measure方法中的两个参数的含义,刚才有提到参数是父View对子View的测量规格要求,那么Android是如何描述的呢,这里用到了一个类MeasureSpec,此类为View中的一个内部类,关键源码如下:

public static class MeasureSpec {
        private static final int MODE_SHIFT = 30;
        private static final int MODE_MASK  = 0x3 << MODE_SHIFT;
        public static final int UNSPECIFIED = 0 << MODE_SHIFT;
        public static final int EXACTLY     = 1 << MODE_SHIFT;
        public static final int AT_MOST     = 2 << MODE_SHIFT;
        public static int makeMeasureSpec(int size, int mode) {
            if (sUseBrokenMakeMeasureSpec) {
                return size + mode;
            } else {
                return (size & ~MODE_MASK) | (mode & MODE_MASK);
            }
        }
        public static int getMode(int measureSpec) {
            return (measureSpec & MODE_MASK);
        }
        public static int getSize(int measureSpec) {
            return (measureSpec & ~MODE_MASK);
        }

      ……
}

  根据SDK,此类封装了父View对子View的布局要求,每个实例都代表了对子View的高度或者宽度的要求,测量要求包含两个部分,分别为尺寸和模式。模式主要由三种,具体如下:

1、  UNSPECIFIED:代表父View对子View没有约束,子View可以为任意大小。

2、  EXACTLY:父View确定子View的大小,子View被限定在给定的边界中,忽咯本身的大小。

3、  AT_MOST:子View最大可以达到指定大小的值。

  该类中提供了用来计算和生成测量要求的方法,具体如下:

1、  public static int makeMeasureSpec(int size, int mode),此方法最终生成一个32位二进制数用来表明测量规格要求,其中32和31位用来表明模式,后30位代表了大小。

2、  public static int getMode(int measureSpec),此方法可以根据测量说明,计算模式。

3、  public static int getSize(int measureSpec),此方法根据测量说明,计算大小。

  明白了MeasureSpec,我们在回过头来,看一看onMeasure方法,该方法的源码如下:

    protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
        setMeasuredDimension(getDefaultSize(getSuggestedMinimumWidth(), widthMeasureSpec),
                getDefaultSize(getSuggestedMinimumHeight(), heightMeasureSpec));
}

  此方法的默认实现非常简单,调用了setMeasuredDimersion方法将测量好的尺寸保存到mMeasuredWidth和mMeasuredHeight。而在setMeasuredDimersion方法中调用了getDefaultSize用来计算,该方法具体如下:

public static int getDefaultSize(int size, int measureSpec) {
        int result = size;
        int specMode = MeasureSpec.getMode(measureSpec);
        int specSize = MeasureSpec.getSize(measureSpec);

        switch (specMode) {
        case MeasureSpec.UNSPECIFIED:
            result = size;
            break;
        case MeasureSpec.AT_MOST:
        case MeasureSpec.EXACTLY:
            result = specSize;
            break;
        }
        return result;
    }

  很明显,此方法根据提供的默认大小和测量要求计算View的实际大小。到此为止,View完了测量过程。不过大多数情况下,当我们自定义ViewGroup的时候,我们需要重写onMeasure方法,在此方法中,可以遍历所有的子View并要求他们对自己的大小进行测量,同时不要忘记调用setMeasuredDimension进行保存测量结果,在ViewGroup是通过如下三个方法实现的,关键代码如下:

  方法mesureChildren,遍历所有的非隐藏的子View,并调用measureChild方法设置子View的测量要求。

protected void measureChildren(int widthMeasureSpec, int heightMeasureSpec) {
        final int size = mChildrenCount;
        final View[] children = mChildren;
        for (int i = 0; i < size; ++i) {
            final View child = children[i];
            if ((child.mViewFlags & VISIBILITY_MASK) != GONE) {
                measureChild(child, widthMeasureSpec, heightMeasureSpec);
            }
        }
}

  方法measureChild,获取子View的测量规格,并调用measure进行测量实际大小。

protected void measureChild(View child, int parentWidthMeasureSpec,
            int parentHeightMeasureSpec) {
        final LayoutParams lp = child.getLayoutParams();

        final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,
                mPaddingLeft + mPaddingRight, lp.width);
        final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec,
                mPaddingTop + mPaddingBottom, lp.height);

        child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
}

  方法getChildMeasureSpec用于获取View的测量规格要求。

    public static int getChildMeasureSpec(int spec, int padding, int childDimension) {
        int specMode = MeasureSpec.getMode(spec);
        int specSize = MeasureSpec.getSize(spec);

        int size = Math.max(0, specSize - padding);

        int resultSize = 0;
        int resultMode = 0;

        switch (specMode) {
        // Parent has imposed an exact size on us
        case MeasureSpec.EXACTLY:
            if (childDimension >= 0) {
                resultSize = childDimension;
                resultMode = MeasureSpec.EXACTLY;
            } else if (childDimension == LayoutParams.MATCH_PARENT) {
                // Child wants to be our size. So be it.
                resultSize = size;
                resultMode = MeasureSpec.EXACTLY;
            } else if (childDimension == LayoutParams.WRAP_CONTENT) {
                // Child wants to determine its own size. It can't be
                // bigger than us.
                resultSize = size;
                resultMode = MeasureSpec.AT_MOST;
            }
            break;

        // Parent has imposed a maximum size on us
        case MeasureSpec.AT_MOST:
            if (childDimension >= 0) {
                // Child wants a specific size... so be it
                resultSize = childDimension;
                resultMode = MeasureSpec.EXACTLY;
            } else if (childDimension == LayoutParams.MATCH_PARENT) {
                // Child wants to be our size, but our size is not fixed.
                // Constrain child to not be bigger than us.
                resultSize = size;
                resultMode = MeasureSpec.AT_MOST;
            } else if (childDimension == LayoutParams.WRAP_CONTENT) {
                // Child wants to determine its own size. It can't be
                // bigger than us.
                resultSize = size;
                resultMode = MeasureSpec.AT_MOST;
            }
            break;

        // Parent asked to see how big we want to be
        case MeasureSpec.UNSPECIFIED:
            if (childDimension >= 0) {
                // Child wants a specific size... let him have it
                resultSize = childDimension;
                resultMode = MeasureSpec.EXACTLY;
            } else if (childDimension == LayoutParams.MATCH_PARENT) {
                // Child wants to be our size... find out how big it should
                // be
                resultSize = 0;
                resultMode = MeasureSpec.UNSPECIFIED;
            } else if (childDimension == LayoutParams.WRAP_CONTENT) {
                // Child wants to determine its own size.... find out how
                // big it should be
                resultSize = 0;
                resultMode = MeasureSpec.UNSPECIFIED;
            }
            break;
        }
        return MeasureSpec.makeMeasureSpec(resultSize, resultMode);
    }

 

  疑问咨询或技术交流,请加入官方QQ群:JRedu技术交流 (452379712)

 

作者: 杰瑞教育
出处: http://blog.youkuaiyun.com/jerehedu/ 
本文版权归烟台杰瑞教育科技有限公司和优快云共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。
 
内容概要:本文档详细介绍了基于MATLAB实现多目标差分进化(MODE)算法进行无人机三维路径规划的项目实例。项目旨在提升无人机在复杂三维环境中路径规划的精度、实时性、多目标协调处理能力、障碍物避让能力和路径平滑性。通过引入多目标差分进化算法,项目解决了传统路径规划算法在动态环境和多目标优化中的不足,实现了路径长度、飞行安全距离、能耗等多个目标的协调优化。文档涵盖了环境建模、路径编码、多目标优化策略、障碍物检测与避让、路径平滑处理等关键技术模块,并提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,对无人机路径规划和多目标优化算法感兴趣的科研人员、工程师和研究生。 使用场景及目标:①适用于无人机在军事侦察、环境监测、灾害救援、物流运输、城市管理等领域的三维路径规划;②通过多目标差分进化算法,优化路径长度、飞行安全距离、能耗等多目标,提升无人机任务执行效率和安全性;③解决动态环境变化、实时路径调整和复杂障碍物避让等问题。 其他说明:项目采用模块化设计,便于集成不同的优化目标和动态环境因素,支持后续算法升级与功能扩展。通过系统实现和仿真实验验证,项目不仅提升了理论研究的实用价值,还为无人机智能自主飞行提供了技术基础。文档提供了详细的代码示例,有助于读者深入理解和实践该项目。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值