Hadoop学习笔记(一)

Hadoop是由Apache基金会开发的分布式系统基础架构,简化了分布式程序的开发,提供了高速运算和存储能力。Hadoop的核心组件包括HDFS和MapReduce,分别负责海量数据的存储和计算。Hadoop适用于搜索引擎、大数据存储、处理及科学研究等领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 什么是Hadoop平台

Hadoop是一个由Apache基金会所开发的分布式系统基础架构。
用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。
Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求,可以以流的形式访问(streaming access)文件系统中的数据。
Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,而MapReduce则为海量的数据提供了计算。 (百度百科)

  • 分布式计算的概念:
    简单来说就是把庞大的数据分给不同的计算机分开计算,解决由于硬件性能不足,运算速度慢的问题。
  • 个人小结:
    而Hadoop就是把分布式开发的功能集合在一个平台上,实现功能接口给用户使用,让复杂的分布式底层简单化。

以下内容参考:https://www.cnblogs.com/maybe2030/p/4593190.html

2.Hadoop平台的使用

大数据时代已经到来,给我们的生活、工作、思维方式都带来变革。如何寻求大数据后面的价值,既是机遇又是挑战。不管是金融数据、还是电商数据、又还是社交数据、游戏数据… … 这些数据的规模、结构、增长的速度都给传统数据存储和处理技术带来巨大的考验。幸运的是,Hadoop的诞生和所构建成的生态系统给大数据的存储、处理和分析带来了曙光。

不管是国外的著名公司Google、Yahoo!、微软、亚马逊、 EBay、FaceBook、Twitter、LinkedIn等和初创公司Cloudera、Hortonworks等,又还是国内的著名公司中国移动、阿里巴巴、华为、腾讯、百度、网易、京东商城等,都在使用Hadoop及相关技术解决大规模化数据问题,以满足公司需求和创造商业价值。

例如:Yahoo! 的垃圾邮件识别和过滤、用户特征建模系统;Amazon.com(亚马逊)的协同过滤推荐系统;Facebook的Web日志分析;Twitter、LinkedIn的人脉寻找系统;淘宝商品推荐系统、淘宝搜索中的自定义筛选功能……这些应用都使用到Hadoop及其相关技术。

“Hadoop能做什么?” ,概括如下:

1)搜索引擎:这也正是Doug Cutting设计Hadoop的初衷,为了针对大规模的网页快速建立索引;

2)大数据存储:利用Hadoop的分布式存储能力,例如数据备份、数据仓库等;

3)大数据处理:利用Hadoop的分布式处理能力,例如数据挖掘、数据分析等;

4)科学研究:Hadoop是一种分布式的开源框架,对于分布式系统有很大程度地参考价值。

3.Hadoop的三种模式

参考:http://www.cnblogs.com/maybe2030/p/4591195.html
Hadoop有三种不同的模式操作,分别为单机模式、伪分布模式和全分布模式。

  • 单机模式操作是Hadoop的默认操作模式,当首次解压Hadoop的源码包时,Hadoop无法了解硬件安装环境,会保守地选择最小配置,即单机模式。该模式主要用于开发调试MapReduce程序的应用逻辑,而不会和守护进程交互,避免增加额外的复杂性。

  • 伪分布模式操作是指在“单节点集群”上运行Hadoop,其中所有的守护进程都运行在同一台机器上。该模式在单机模式操作之上多了代码调试功能,可以查阅内存的使用情况、HDFS的输入输出以及守护进程之间的交互。

  • 全分布模式操作是指一种实际意义上的Hadoop集群,其规模可从几个节点的小集群到成百上千个节点的大集群,甚至是成千上万的超大集群。

个人小结:

  • 单机模式:没有分布式文件系统,主要是学习或开发阶段事使用。
  • 伪分布模式:在一台电脑里模拟多主机,也用于学习开发
  • 完全分布模式:真正的生产环境。
内容概要:本文系统介绍了基于C#(VS2022+.NET Core)与HALCON 24.11的工业视觉测量拟合技术,涵盖边缘提取、几何拟合、精度优化及工业部署全流程。文中详细解析了亚像素边缘提取、Tukey抗噪算法、SVD平面拟合等核心技术,并提供了汽车零件孔径测量、PCB焊点共面性检测等典型应用场景的完整代码示例。通过GPU加速、EtherCAT同步等优化策略,实现了±0.01mm级测量精度,满足ISO 1101标准。此外,文章还探讨了深度学习、量子启发式算法等前沿技术的应用前景。 适合人群:具备定编程基础,尤其是熟悉C#和HALCON的工程师或研究人员,以及从事工业视觉测量与自动化检测领域的技术人员。 使用场景及目标:①学习如何使用C#和HALCON实现高精度工业视觉测量系统的开发;②掌握边缘提取、抗差拟合、3D点云处理等核心技术的具体实现方法;③了解工业部署中的关键技术,如GPU加速、EtherCAT同步控制、实时数据看板等;④探索基于深度学习和量子计算的前沿技术在工业视觉中的应用。 其他说明:本文不仅提供了详细的理论分析和技术实现,还附有完整的代码示例和实验数据,帮助读者更好地理解和实践。同时,文中提到的硬件选型、校准方法、精度验证等内容,为实际项目实施提供了重要参考。文章最后还给出了未来的技术演进方向和开发者行动建议,如量子-经典混合计算、自监督学习等,以及参与HALCON官方认证和开源社区的建议。
内容概要:本文介绍了基于WOA-GRU-Attention模型的时序数据分类预测项目,旨在提升时序数据分类准确率,实现智能优化,并提供强泛化能力的分类框架。项目背景指出传统机器学习方法难以处理时序数据的复杂特性,而GRU、注意力机制和WOA的结合能有效应对这些问题。文章详细描述了项目的目标与意义,包括提升分类准确率、实现智能优化、推动元启发式算法的应用等。同时,文中列出了项目面临的挑战及解决方案,如高维数据特征复杂、超参数调优难度大等。项目模型架构由WOA、GRU和注意力机制三部分组成,通过Python代码示例展示了模型的具体实现,包括模型定义、训练过程和WOA优化算法的核心步骤。; 适合人群:具备定编程基础,尤其是对深度学习、时序数据分析感兴趣的开发者和研究人员。; 使用场景及目标:① 提升时序数据分类准确率,特别是在金融、医疗、智能制造等领域;② 实现模型训练过程的智能优化,避免传统调参的局限;③ 提供具备强泛化能力的时序数据分类框架,支持多行业多场景应用;④ 推动高性能时序模型的工业应用落地,提高智能系统的响应速度和决策质量。; 其他说明:项目不仅实现了工程应用,还在理论层面对GRU结构与注意力机制的融合进行了系统分析,结合WOA优化过程对模型训练动力学展开研究,促进了深度学习与优化算法交叉研究领域的发展。读者可以通过提供的代码示例和链接进步了解项目的具体实现和应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值