KMP算法详解

作者: July  、 saturnma     时间; 二零一一年一月一日

-----------------------

本文参考:数据结构C语言版) 李云清等编著、算法导论
作者声明:个人July 对此24个经典算法系列,享有版权,转载请注明出处。

引言:
在文本编辑中,我们经常要在一段文本中某个特定的位置找出 某个特定的字符或模式。
由此,便产生了字符串的匹配问题。
本文由简单的字符串匹配算法开始,经Rabin-Karp算法,最后到KMP算法,教你从头到尾彻底理解KMP算法。

来看算法导论一书上关于此字符串问题的定义:
假设文本是一个长度为n的数组T[1...n],模式是一个长度为m<=n的数组P[1....m]。
进一步假设P和T的元素都是属于有限字母表Σ.中的字符。

依据上图,再来解释下字符串匹配问题。目标是找出所有在文本T=abcabaabcaabac中的模式P=abaa所有出现。
该模式仅在文本中出现了一次,在位移s=3处。位移s=3是有效位移。

 

一、简单的字符串匹配算法

简单的字符串匹配算法用一个循环来找出所有有效位移,
该循环对n-m+1个可能的每一个s值检查条件P[1....m]=T[s+1....s+m]。

NAIVE-STRING-MATCHER(T, P)
1 n ← length[T]
2 m ← length[P]
3 for s ← 0 to n - m
4     do if P[1 ‥ m] = T[s + 1 ‥ s + m]          
      //对n-m+1个可能的位移s中的每一个值,比较相应的字符的循环必须执行m次。
5           then print "Pattern occurs with shift" s

简单字符串匹配算法,上图针对文本T=acaabc 和模式P=aab。
上述第4行代码,n-m+1个可能的位移s中的每一个值,比较相应的字符的循环必须执行m次。
所以,在最坏情况下,此简单模式匹配算法的运行时间为O((n-m+1)m)。

 

--------------------------------

下面我再来举个具体例子,并给出一具体运行程序:
对于目的字串target是banananobano,要匹配的字串pattern是nano,的情况,

下面是匹配过程,原理很简单,只要先和target字串的第一个字符比较,
如果相同就比较下一个,如果不同就把pattern右移一下,
之后再从pattern的每一个字符比较,这个算法的运行过程如下图。
//index表示的每n次匹配的情形。

 

#include<iostream>
#include<string>
using namespace std;
int match(const string& target,const string& pattern)
{
    int target_length = target.size();
    int pattern_length = pattern.size();
    int target_index = 0;
    int pattern_index = 0;
    while(target_index < target_length && pattern_index < pattern_length)
    {
        if(target[target_index]==pattern[pattern_index])
        {
            ++target_index;
            ++pattern_index;
        }
        else
        {
            target_index -= (pattern_index-1); 
            pattern_index = 0;
        }
    }
    if(pattern_index == pattern_length)
    {
        return target_index - pattern_length;
    }
    else
    {
        return -1;
    }
}
int main()
{
    cout<<match("banananobano","nano")<<endl;
    return 0;
}

//运行结果为4。

 

上面的算法进间复杂度是O(pattern_length*target_length),
我们主要把时间浪费在什么地方呢,
观查index =2那一步,我们已经匹配了3个字符,而第4个字符是不匹配的,这时我们已经匹配的字符序列是nan,

此时如果向右移动一位,那么nan最先匹配的字符序列将是an,这肯定是不能匹配的,
之后再右移一位,匹配的是nan最先匹配的序列是n,这是可以匹配的。

如果我们事先知道pattern本身的这些信息就不用每次匹配失败后都把target_index回退回去,
这种回退就浪费了很多不必要的时间,如果能事先计算出pattern本身的这些性质,
那么就可以在失配时直接把pattern移动到下一个可能的位置,
把其中根本不可能匹配的过程省略掉,
如上表所示我们在index=2时失配,此时就可以直接把pattern移动到index=4的状态,
kmp算法就是从此出发。

 

二、KMP算法

1、 覆盖函数(overlay_function)

覆盖函数所表征的是pattern本身的性质,可以让为其表征的是pattern从左开始的所有连续子串的自我覆盖程度。
比如如下的字串,abaabcaba

 

由于计数是从0始的,因此覆盖函数的值为0说明有1个匹配,对于从0还是从来开始计数是偏好问题,

具体请自行调整,其中-1表示没有覆盖,那么何为覆盖呢,下面比较数学的来看一下定义,比如对于序列

a0a1...aj-1 aj

 

要找到一个k,使它满足

a0a1...ak-1ak=aj-kaj-k+1...aj-1aj

而没有更大的k满足这个条件,就是说要找到尽可能大k,使pattern前k字符与后k字符相匹配,k要尽可能的大,
原因是如果有比较大的k存在,而我们选择较小的满足条件的k,
那么当失配时,我们就会使pattern向右移动的位置变大,而较少的移动位置是存在匹配的,这样我们就会把可能匹配的结果丢失。

比如下面的序列,

 

在红色部分失配,正确的结果是k=1的情况,把pattern右移4位,如果选择k=0,右移5位则会产生错误。
计算这个overlay函数的方法可以采用递推,可以想象如果对于pattern的前j个字符,如果覆盖函数值为k

a0a1...ak-1ak=aj-kaj-k+1...aj-1aj
则对于pattern的前j+1序列字符,则有如下可能
⑴     pattern[k+1]==pattern[j+1] 此时overlay(j+1)=k+1=overlay(j)+1
⑵     pattern[k+1]≠pattern[j+1] 此时只能在pattern前k+1个子符组所的子串中找到相应的overlay函数,h=overlay(k),如果此时pattern[h+1]==pattern[j+1],则overlay(j+1)=h+1否则重复(2)过程.

 

下面给出一段计算覆盖函数的代码:

#include<iostream>
#include<string>
using namespace std;
void compute_overlay(const string& pattern)
{
    const int pattern_length = pattern.size();
    int *overlay_function = new int[pattern_length];
    int index;
    overlay_function[0] = -1;
    for(int i=1;i<pattern_length;++i)
    {
        index = overlay_function[i-1];
        //store previous fail position k to index;
        
        while(index>=0 && pattern[i]!=pattern[index+1])
        {
            index = overlay_function[index];
        }
        if(pattern[i]==pattern[index+1])
        {
            overlay_function[i] = index + 1;  
        }
        else
        {
            overlay_function[i] = -1;
        }
    }
    for(i=0;i<pattern_length;++i)
    {
        cout<<overlay_function[i]<<endl;
    }
    delete[] overlay_function;
}
int main()
{
    string pattern = "abaabcaba";
    compute_overlay(pattern);
    return 0;
}


运行结果为:

-1
-1
0
0
1
-1
0
1
2
Press any key to continue

-------------------------------------

 

2、kmp算法
     有了覆盖函数,那么实现kmp算法就是很简单的了,我们的原则还是从左向右匹配,但是当失配发生时,我们不用把target_index向回移动,target_index前面已经匹配过的部分在pattern自身就能体现出来,只要动pattern_index就可以了。

当发生在j长度失配时,只要把pattern向右移动j-overlay(j)长度就可以了。

 如果失配时pattern_index==0,相当于pattern第一个字符就不匹配,
这时就应该把target_index加1,向右移动1位就可以了。

 

ok,下图就是KMP算法的过程(红色即是采用KMP算法的执行过程):

 

 

 

ok,最后给出KMP算法实现的c++代码:

#include<iostream>
#include<string>
#include<vector>
using namespace std;

int kmp_find(const string& target,const string& pattern)
{
    const int target_length = target.size();
    const int pattern_length = pattern.size();
    int * overlay_value = new int[pattern_length];
    overlay_value[0] = -1;
    int index = 0;
    for(int i=1;i<pattern_length;++i)
    {
        index = overlay_value[i-1];
        while(index>=0 && pattern[index+1]!=pattern[i])
        {
            index  = overlay_value[index];
        }
        if(pattern[index+1]==pattern[i])
        {
            overlay_value[i] = index +1;
        }
        else
        {
            overlay_value[i] = -1;
        }
    }
    //match algorithm start
    int pattern_index = 0;
    int target_index = 0;
    while(pattern_index<pattern_length&&target_index<target_length)
    {
        if(target[target_index]==pattern[pattern_index])
        {
            ++target_index;
            ++pattern_index;
        }
        else if(pattern_index==0)
        {
            ++target_index;
        }
        else
        {
            pattern_index = overlay_value[pattern_index-1]+1;
        }
    }
    if(pattern_index==pattern_length)
    {
        return target_index-pattern_index;
    }
    else
    {
        return -1;
    }
    delete [] overlay_value;
}

int main()
{
    string source = " annbcdanacadsannannabnna";
    string pattern = " annacanna";
    cout<<kmp_find(source,pattern)<<endl;
    return 0;
}
//运行结果为 -1.

 

三、kmp算法的来源
    kmp如此精巧,那么它是怎么来的呢,为什么要三个人合力才能想出来。其实就算没有kmp算法,人们在字符匹配中也能找到相同高效的算法。这种算法,最终相当于kmp算法,只是这种算法的出发点不是覆盖函数,不是直接从匹配的内在原理出发,而使用此方法的计算的覆盖函数过程序复杂且不易被理解,但是一但找到这个覆盖函数,那以后使用同一pattern匹配时的效率就和kmp一样了,其实这种算法找到的函数不应叫做覆盖函数,因为在寻找过程中根本没有考虑是否覆盖的问题。

    说了这么半天那么这种方法是什么呢,这种方法是就大名鼎鼎的确定的有限自动机(Deterministic finite state automaton DFA),DFA可识别的文法是3型文法,又叫正规文法或是正则文法,既然可以识别正则文法,那么识别确定的字串肯定不是问题(确定字串是正则式的一个子集)。对于如何构造DFA,是有一个完整的算法,这里不做介绍了。在识别确定的字串时使用DFA实在是大材小用,DFA可以识别更加通用的正则表达式,而用通用的构建DFA的方法来识别确定的字串,那这个overhead就显得太大了。

    kmp算法的可贵之处是从字符匹配的问题本身特点出发,巧妙使用覆盖函数这一表征pattern自身特点的这一概念来快速直接生成识别字串的DFA,因此对于kmp这种算法,理解这种算法高中数学就可以了,但是如果想从无到有设计出这种算法是要求有比较深的数学功底的。
 


本文来自优快云博客,转载请标明出处:http://blog.youkuaiyun.com/v_JULY_v/archive/2011/01/01/6111565.aspx

<think>好的,用户想要了解KMP算法的详细解释和使用方,包括实现步骤和示例代码。我需要根据提供的引用资料来整理回答。首先,KMP算法的核心思想是通过预处理模式串生成next数组,避免回溯主串指针,提高匹配效率。接下来,我需要分步骤解释算法流程,比如如何构建next数组,如何进行匹配过程。然后,给出一个具体的示例代码,可能用Python来实现,因为用户之前的示例也是Python。还要注意用户提到的系统级指令,比如数学公式的格式,独立公式用$$...$$,行内用$...$。同时,回答中需要自然地添加引用标识,比如在提到优化效率时引用[^2]。最后,生成相关问题,比如next数组的构建方、时间复杂度分析等。需要确保LaTeX语正确,比如模式串的前缀函数可能用数学表达式表示。检查是否有遗漏的步骤,比如部分匹配表的生成过程,确保逻辑清晰,结构合理。</think>### KMP算法详解及实现 #### 一、核心思想 KMP算法通过**前缀函数**预处理模式串生成$next$数组,使得匹配失败时能跳过无效比较。其核心是保持主串指针$i$不回溯,仅调整模式串指针$j$,将时间复杂度从暴力算法的$O(n \times m)$优化到$O(n + m)$[^3]。 #### 二、实现步骤 1. **构建next数组** - 定义:$next[j]$表示模式串$P[0..j]$中最长相等前后缀长度 - 递推公式: $$ next[j] = \begin{cases} -1 & j=0 \\ max\{k \mid 0 \leq k<j \text{ 且 } P[0..k] = P[j-k..j]\} & \text{其他情况} \end{cases} $$ - 示例:模式串"ABABC"的$next$数组为$[-1,0,0,1,2]$ 2. **匹配过程** - 初始化$i=0$, $j=0$ - 当$i < \text{主串长度}$且$j < \text{模式串长度}$: - 若$j=-1$或主串$T[i] = P[j]$,则$i++, j++$ - 否则$j = next[j]$ - 当$j \geq \text{模式串长度}$时匹配成功 #### 三、Python实现示例 ```python def kmp(text, pattern): n, m = len(text), len(pattern) next_arr = get_next(pattern) i = j = 0 while i < n and j < m: if j == -1 or text[i] == pattern[j]: i += 1 j += 1 else: j = next_arr[j] return i - j if j == m else -1 def get_next(pattern): m = len(pattern) next_arr = [-1] * m k = -1 for j in range(1, m): while k >= 0 and pattern[j] != pattern[k+1]: k = next_arr[k] if pattern[j] == pattern[k+1]: k += 1 next_arr[j] = k return next_arr ``` #### 四、示例说明 主串$T= "ABABABABC"$,模式串$P= "ABABC"$时: 1. 生成$next=[-1,0,0,1,2]$ 2. 匹配失败时通过$next$数组跳过冗余比较 3. 最终在第4次调整后匹配成功[^1]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值