elasticsearch运维经验分享,收藏这篇就够了

正文

各位运维同行朋友们,大家好,非常高兴能有这么个机会与大家一起交流一些技术问题。

此前的各位分享达人们在技术领域或管理领域均有十分精彩的分享,他们带给我们的是多个领域中研究或实践的最前沿知识。这使我本人获益良多,首先要郑重感谢他们。

这些一线的运维或运维开发工程师不断地将知识、经验或应用趋势等反馈给我们,也因此,我们的课程体系也发展为了快速迭代和演进的模式。

另外,不断地通过各种渠道指导他们解决实践中的问题的经验也成为课堂中案例的组成部分。

比如今天的分享,沿用我们的一贯方式,初衷是为那些不甚了解、即将或刚用到ELK stack的朋友们提供一个可落地的思路和实践方法。而ELK达人们还请多批评指正。

下面进入正题。今天的分享共分为如下几个组成部分。不过,如果时间上来不及,可能只会聊前两个而不及其余。

1、搜索引擎组件介绍;
2、ElasticSearch工作原理、查询及常用插件;
3、日志收集器Logstash及常见的同类工具;
4、可视化工具Kibina;
5、使用案例及优化思路;

一、关于搜索引擎

各位知道,搜索程序一般由索引链及搜索组件组成。

索引链功能的实现需要按照几个独立的步骤依次完成:检索原始内容、根据原始内容来创建对应的文档、对创建的文档进行索引。

搜索组件用于接收用户的查询请求并返回相应结果,一般由用户接口、构建可编程查询语句的方法、查询语句执行引擎及结果展示组件组成。

著名的开源程序Lucene是为索引组件,它提供了搜索程序的核心索引和搜索模块,例如图中的“Index”及下面的部分;而ElasticSearch则更像一款搜索组件,它利用Lucene进行文档索引,并向用户提供搜索组件,例如“Index”上面的部分。二者结合起来组成了一个完整的搜索引擎。

我们先说索引组件。

索引是一种数据结构,它允许对存储在其中的单词进行快速随机访问。

当需要从大量文本中快速检索文本目标时,必须首先将文本内容转换成能够进行快速搜索的格式,以建立针对文本的索引数据结构,此即为索引过程。

它通常由逻辑上互不相关的几个步骤组成。

第一步:获取内容。

过网络爬虫或蜘蛛程序等来搜集及界定需要索引的内容。

Lucene并不提供任何获取内容的组件,因此,需要由其它应用程序负责完成这一功能,例如著名的开源爬虫程序Solr、Nutch、Grub及Aperture等。

必要时,还可以自行开发相关程序以高效获取自有的特定环境中的数据。获取到的内容需要建立为小数据块,即文档(Document)。

第二步:建立文档。

获取的原始内容需要转换成专用部件(文档)才能供搜索引擎使用。

一般来说,一个网页、一个PDF文档、一封邮件或一条日志信息可以作为一个文档。文档由带“值(Value)”的“域(Field)”组成,例如标题(Title)、正文(body)、摘要(abstract)、作者(Author)和链接(url)等。

不过,二进制格式的文档处理起来要麻烦一些,例如PDF文件。

对于建立文档的过程来说有一个常见操作:向单个的文档和域中插入加权值,以便在搜索结果中对其进行排序。权值可在索引操作前静态生成,也可在搜索期间才动态生成。权值决定了其搜索相关度。

第三步:文档分析。

搜索引擎不能直接对文本进行索引,确切地说,必须首先将文本分割成一系列被称为语汇单元(token)的独立原子元素,此过程即为文档分析。

每个token大致能与自然语言中的“单词”对应起来,文档分析就是用于确定文档中的文本域如何分割成token序列。

文档分析中要解决的问题包括如何处理连接一体的各个单词、是否需要语法修正(例如原始内容存在错别字)、是否需要向原始token中插入同义词(例如laptop和notebook)、是否需要将大写字符统一转换为小写字符,以及是否将单数和复数格式的单词合并成同一个token等。

这通常需要词干分析器等来完成此类工作,Lucene提供了大量内嵌的分析器,也支持用户自定义分析器,甚至联合Lucene的token工具和过滤器创建自定义的分析链。

第四步、文档索引

在索引步骤中,文档将被加入到索引列表。事实上,Lucene为此仅提供了一个非常简单的API,而后自行内生地完成了此步骤的所有功能。

接下来,我们说搜索组件。

索引处理就是从索引中查找单词,从而找到包含该单词的文档的过程。搜索质量主要由查准率(Precision)和查全率(Recall)两个指标进行衡量。

查准率用来衡量搜索系列过滤非相关文档的能力,而查全率用来衡量搜索系统查找相关文档的能力。

另外,除了快速搜索大量文本和搜索速度之后,搜索过程还涉及到了许多其它问题,例如单项查询、多项查询、短语查询、通配符查询、结果ranking和排序,以及友好的查询输入方式等。这些问题的解决,通常需要多个组件协作完成。

搜索组件主要由以下几个部分组成:

1、用户搜索界面

UI(User Interface)是搜索引擎的重要组成部分,用户通过搜索引擎界面进行搜索交互时,他们会提交一个搜索请求,该请求需要先转换成合适的查询对象格式,以便搜索引擎能执行查询。

2、建立查询

用户提交的搜索请求通常以HTML表单或Ajax请求的形式由浏览器提交到搜索引擎服务器,因此,需要事先由查询解析器一类的组件将这个请求转换成搜索引擎使用的查询对象格式。

3、搜索查询

当查询请求建立完成后,就需要查询检索索引并返回与查询语句匹配的并根据请求排好序的文档。

搜索查询组件有着复杂的工作机制,它们通常根据搜索理论模型执行查询操作。

常见的搜索理论模型有纯布尔模型、向量空间模型及概率模型三种。Lucene采用了向量空间模型和纯布尔模型。

4、展现结果

查询获得匹配查询语句并排好序的文档结果集后,需要用直观、经济的方式为用户展现结果。

UI也需要为后续的搜索或操作提供清晰的向导,如完善搜索结果、寻找与匹配结果相似的文档、进入下一页面等。

本节的最后简单说一下Lucene。

Lucene是一款高性能的、可扩展的信息检索(IR)工具库,是由Java语言开发的成熟、自由开源的搜索类库,基于Apache协议授权。

Lucene只是一个软件类库,如果要发挥Lucene的功能,还需要开发一个调用Lucene类库的应用程序。

文档是Lucene索引和搜索的原子单位,它是包含了一个或多个域的容器,而域的值则是真正被搜索的内容。每个域都有其标识名称,通常为一个文本值或二进制值。

将文档加入索引中时,需要首先将数据转换成Lucene能识别的文档和域,域值是被搜索的对象。

例如,用户输入搜索内容“title:elasticsearch”时,则表示搜索“标题”域值中包含单词“elasticsearch”的所有文档。

默认情况下,所有文档都没有加权值,或者说其加权因子都为1.0。

通过改变文档的加权因子,可以指示Lucene在计算相关性时或多或少地考虑到该文档针对索引中其它文档的重要程度,从而能够将有着较大加权因子的文档排列在较前的位置。

除了对文档进行加权,Lucene还支持对域进行加权操作。

二、ElasticSearch工作原理、查询及常用插件

ElasticSearch(简称ES)是一个基于Lucene构建的开源、分布式、RESTful的全文本搜索引擎。

不过,ElasticSearch却也不仅只是一个全文本搜索引擎,它还是一个分布式实时文档存储,其中每个field均是被索引的数据且可被搜索;也是一个带实时分析功能的分布式搜索引擎,并且能够扩展至数以百计的服务器存储及处理PB级的数据。

如前所述,ElasticSearch在底层利用Lucene完成其索引功能,因此其许多基本概念源于Lucene。

我们先说说ES的基本概念。

索引(Index)

ES将数据存储于一个或多个索引中,索引是具有类似特性的文档的集合。类比传统的关系型数据库领域来说,索引相当于SQL中的一个数据库,或者一个数据存储方案(schema)。

索引由其名称(必须为全小写字符)进行标识,并通过引用此名称完成文档的创建、搜索、更新及删除操作。一个ES集群中可以按需创建任意数目的索引。

类型(Type)

类型是索引内部的逻辑分区(category/partition),然而其意义完全取决于用户需求。因此,一个索引内部可定义一个或多个类型(type)。一般来说,类型就是为那些拥有相同的域的文档做的预定义。

例如,在索引中,可以定义一个用于存储用户数据的类型,一个存储日志数据的类型,以及一个存储评论数据的类型。类比传统的关系型数据库领域来说,类型相当于“表”。

文档(Document)

文档是Lucene索引和搜索的原子单位,它是包含了一个或多个域的容器,基于JSON格式进行表示。

文档由一个或多个域组成,每个域拥有一个名字及一个或多个值,有多个值的域通常称为“多值域”。每个文档可以存储不同的域集,但同一类型下的文档至应该有某种程度上的相似之处。

映射(Mapping)

ES中,所有的文档在存储之前都要首先进行分析。用户可根据需要定义如何将文本分割成token、哪些token应该被过滤掉,以及哪些文本需要进行额外处理等等。

另外,ES还提供了额外功能,例如将域中的内容按需排序。事实上,ES也能自动根据其值确定域的类型。

接下去再说说ES Cluster相关的一些概念。

集群(Cluster)

ES集群是一个或多个节点的集合,它们共同存储了整个数据集,并提供了联合索引以及可跨所有节点的搜索能力。

多节点组成的集群拥有冗余能力,它可以在一个或几个节点出现故障时保证服务的整体可用性。

集群靠其独有的名称进行标识,默认名称为“elasticsearch”。节点靠其集群名称来决定加入哪个ES集群,一个节点只能属一个集群。

如果不考虑冗余能力等特性,仅有一个节点的ES集群一样可以实现所有的存储及搜索功能。

节点(Node)

运行了单个实例的ES主机称为节点,它是集群的一个成员,可以存储数据、参与集群索引及搜索操作。

类似于集群,节点靠其名称进行标识,默认为启动时自动生成的随机Marvel字符名称。

用户可以按需要自定义任何希望使用的名称,但出于管理的目的,此名称应该尽可能有较好的识别性。

节点通过为其配置的ES集群名称确定其所要加入的集群。

分片(Shard)和副本(Replica)

ES的“分片(shard)”机制可将一个索引内部的数据分布地存储于多个节点,它通过将一个索引切分为多个底层物理的Lucene索引完成索引数据的分割存储功能,这每一个物理的Lucene索引称为一个分片(shard)。

每个分片其内部都是一个全功能且独立的索引,因此可由集群中的任何主机存储。创建索引时,用户可指定其分片的数量,默认数量为5个。

Shard有两种类型:primary和replica,即主shard及副本shard。

Primary shard用于文档存储,每个新的索引会自动创建5个Primary shard,当然此数量可在索引创建之前通过配置自行定义,不过,一旦创建完成,其Primary shard的数量将不可更改。

Replica shard是Primary Shard的副本,用于冗余数据及提高搜索性能。

每个Primary shard默认配置了一个Replica shard,但也可以配置多个,且其数量可动态更改。ES会根据需要自动增加或减少这些Replica shard的数量。

ES集群可由多个节点组成,各Shard分布式地存储于这些节点上。

ES可自动在节点间按需要移动shard,例如增加节点或节点故障时。简而言之,分片实现了集群的分布式存储,而副本实现了其分布式处理及冗余功能。

下面说说ES系统及插件。

ES依赖于JDK,使用Oracke JDK或OpenJDK均可。

JDK在不同平台的安装方式各异,具体方法这里不再介绍。ES的安装也非常容易,通常只需要简单修改其配置文件中的集群名称,并启动服务即可,这里不再赘述。

ElasticSearch在设计上支持插件式体系结构,用户可根据需要通过插件来增强ElasticSearch的功能。

目前,常用的通过插件扩展的功能包括添加自定义映射类型、自定义分析器、本地脚本、自定义发现方式等等。

安装及移除插件

插件的安装有两种方式:直接将插件放置于plugins目录中,或通过plugin脚本进行安装。使用脚本安装的方式如下所示。

~]# plugin --install <org>/<user/component>/<version>

此命令会自动从download.elastic.co或maven下载插件并完成安装。用户也可以直接指定插件的url进行安装,如下所示。

~]# bin/plugin --url file:///path/to/plugin --install plugin-name

Marvel、BigDesk及Head这三个是较为常用的插件。

在plugins目录中,每个拥有_site子目录的插件都有其独立的“站点”,并可通过/_plugin/[plugin_name]/进行访问。

这类插件通常称为“站点”插件。而每个安装过的但没有java相关内容的插件,都会被自动识别为“站点”插件,其内容会被自动移到_site子目录中。

例如,在本机访问marvel插件,http://localhost:9200/_plugin/marvel/。

高效运维社群朋友们,多谢大家的耐心阅读。接下来是ElasticSearch使用入门。

ElasticSearch提供了易用但功能强大的RESTful API以用于与集群进行交互,这些API大体可分为如下四类:

(1) 检查集群、节点、索引等健康与否,以及获取其相关状态与统计信息;
(2) 管理集群、节点、索引数据及元数据;
(3) 执行CRUD操作及搜索操作;
(4) 执行高级搜索操作,例如paging、filtering、scripting、faceting、aggregations及其它操作;

ElasticSearch的RESTful API通过tcp协议的9200端口提供,可通过任何趁手的客户端工具与此接口进行交互,这其中包括最为流行的curl。curl与ElasticSearch交互的通用请求格式如下面所示。

curl -X<VERB> '<PROTOCOL>://<HOST>/<PATH>?<QUERY_STRING>' -d '<BODY>'

    VERB:HTTP协议的请求方法,常用的有GET、POST、PUT、HEAD以及DELETE;
    PROTOCOL:协议类型,http或https;
    HOST:ES集群中的任一主机的主机名;
    PORT:ES服务监听的端口,默认为9200;
    QUERY_STRING:查询参数,例如?pretty表示使用易读的JSON格式输出;
    BODY:JSON格式的请求主体;

例如,查看ElasticSearch工作正常与否的信息。

~]$ curl 'http://localhost:9200/?pretty'

与ElasticSearch集群交互时,其输出数据均为JSON格式,多数情况下,此格式的易读性较差。

cat API会在交互时以类似于Linux上cat命令的格式对结果进行逐行输出,因此有着较JSON好些的可读性。

调用cat API仅需要向“_cat”资源发起GET请求即可。具体使用方法请查阅官方文档。

另外,ES集群的CRUD操作也非常容易进行,朋友们参考官方文档即可。

下面简单说一说ES中的数据查询。

Query API是ElasticSearch的API中较大的一部分,基于Query DSL(JSON based language for building complex queries),可完成诸多类型查询操作,例如simple term query, phrase, range, boolean, fuzzy, span, wildcard, spatial等简单类型查询、组合简单查询类型为复杂类型查询,以及文档过滤等。

另外,查询执行过程通常要分成两个阶段,分散阶段及合并阶段。

分散阶段是向所查询的索引中的所有shard发起执行查询的过程,合并阶段是将各shard返回的结果合并、排序并响应给客户端的过程。

向ElasticSearch发起查询操作有两种方式:一是通过RESTful request API传递查询参数,也称“query-string”;另一个是通过发送REST request body,也称作JSON格式。

通过发送request body的方式进行查询,可以通过JSON定义查询体编写更具表现形式的查询请求。访问ElasticSearch的search API需要通过_search端点进行。例如,向students索引发起一个空查询。

~]$ curl -XGET 'localhost:9200/students/_search?pretty'

上面的查询命令也可改写为带request body的格式,其等同效果的命令如下。

~]$ curl -XGET 'localhost:9200/students/_search?pretty' -d '
{ 
  "query": { "match_all": { } }
}'

此命令所示的查询语句是ElasticSearch提供的JSON风格的域类型查询语言,也即所谓的Query DSL。

上面的命令中,“query”参数给出了查询定义,match_all给出了查询类型,它表示返回给定索引的所有文档。

除了query参数之外,还可以额外指定其它参数来控制搜索结果,例如“size”参数可定义返回的文档数量(默认为10),而“from”参数可指定结果集中要显示出的文档的起始偏移量(默认为0),“sort”参数可指明排序规则等。

ElasticSearch的大多数search API(除了Explain API)都支持多索引(mutli-index)和多类型(multi-type)。如果不限制查询时使用的索引和类型,查询请求将发给集群中的所有文档。

ElasticSearch会把查询请求并行发给所有shard的主shard或某一副本shard,将返回的结果集中的前10返回给用户。

不过,如果是想向某一或某些个索引的某一或某些类型发起查询请求,可通过指定查询的URL进行。

/_search:搜索所有索引的所有类型;
/students/_search:搜索students索引的所有类型;
/students,tutors/_search:搜索students和tutors索引的所有类型;
/s*,t*/_search:搜索名称以s和t开头的所有索引的所有类型;
/students/class1/_search:搜索students索引的class1类型;
/_all/class1,class2/_search:搜索所有索引的class1和class2类型;

索引一个文档时,Elasticsearch会取得其所有域的所有值,并将其连接起来合并为一个大字符串,其被索引为一个特殊域_all。

在某次查询中,如果在query-string中未指定查询的域,则使用_all域进行查询。

下面四个查询的功用会有所不同。前两个在_all域中搜索,而后两个将会在class域上做精确搜索。

GET /_search?q="Huashan"
GET /_search?q="Huashan Pai"
GET /_search?q=class:"Huashan Pai"
GET /_search?q=class:"Huahan"

需要注意的是,文档中每个域的值可能会存储为特定类型,而非字符串类型,因此,_all域的索引方式与特域的索引方式未必完全相同。

文档中,域的数据存储时支持“string”、“numbers”、“Booleans”和“dates”几种类型,不同类型的数据在索引时是略有区别的。

在创建文档时,Elasticsearch会通过检查域的值来动态为其创建mapping,可通过Mapping API来查看type的mapping,其访问端点是_mapping。

下面,我们聊一个麻烦一点的问题,ES的精确值、full-text及倒排索引。

ES的数据可被广义的分为两种类型:“types:exect”和“full-text”。

精确值(Exact values)就是指数据未曾加工过的原始值,而Full-text则用于引用文本中的数据。

在查询中,精确值是很容易进行搜索的,但full-text则需要判断文档在“多大程度上”匹配查询请求,换句话讲,即需要评估文档与给定查询的相关度(relevant)。

因此,所谓的full-text查询通常是指在给定的文本域内部搜索指定的关键字,但搜索操作该需要真正理解查询者的目的,例如:

(1) 搜索“UK”应该返回包含“United Kingdom”的相关文档;
(2) 搜索“jump”应该返回包含“JUMP”、“jumped”、“jumps”、“jumping”甚至是“leap”的文档;
(3) 搜索“johnny walker”应该匹配包含“Johnnie Walker”的文档;

为了完成此类full-text域的搜索,ES必须首先分析文本并将其构建成为倒排索引(inverted index),倒排索引由各文档中出现的单词列表组成,列表中的各单词不能重复且需要指向其所在的各文档。

因此,为了创建倒排索引,需要先将各文档中域的值切分为独立的单词(也称为term或token),而后将之创建为一个无重复的有序单词列表。这个过程称之为“分词(tokenization)”。

其次,为了完成此类full-text域的搜索,倒排索引中的数据还需进行“正规化(normalization)”为标准格式,才能评估其与用户搜索请求字符串的相似度。

例如,将所有大写字符转换为小写,将复数统一单数,将同义词统一进行索引等。

另外,执行查询之前,还需要将查询字符串按照同与索引过程的同种格式进行“正规化(normalization)”。

这里的“分词”及“正规化”操作也称为“分析(analysis)”。

Analysis过程由两个步骤的操作组成:首先将文本切分为terms(词项)以适合构建倒排索引,其次将各terms正规化为标准形式以提升其“可搜索度”。这两个步骤由分析器(analyzers)完成。

一个分析器通常需要由三个组件构成:字符过滤器(Character filters)、分词器(Tokenizer)和分词过滤器(Token filters)组成。

  • 字符过滤器:在文本被切割之前进行清理操作,例如移除HTML标签,将&替换为字符等;

  • 分词器:将文本切分为独立的词项;简单的分词器通常是根据空白及标点符号进行切分;

  • 分词过滤器:转换字符(如将大写转为小写)、移除词项(如移除a、an、of及the等)或者添加词项(例如,添加同义词);

Elasticsearch内置了许多字符过滤器、分词器和分词过滤器,用户可按需将它们组合成“自定义”的分析器。

固然,创建倒排索引时需要用到分析器,但传递搜索字符串时也可能需要分析器,甚至还要用到与索引创建时相同的分析器才能保证单词匹配的精确度。

执行full-text域搜索时,需要用到分析器,但执行精确值搜索时,查询过程不会分析查询字符串而是直接进行精确值匹配。

关于ES,我们最后说一说Queries and Filters。

尽管统一称之为query DSL,事实上Elasticsearch中存在两种DSL:查询DSL(query DSL)和过滤DSL(filter DSL)。

查询子句和过滤子句的自然属性非常相近,但在使用目的上略有区别。

简单来讲,当执行full-text查询或查询结果依赖于相关度分值时应该使用查询DSL,当执行精确值(extac-value)查询或查询结果仅有“yes”或“no”两种结果时应该使用过滤DSL。

Filter DSL计算及过滤速度较快,且适于缓存,因此可有效提升后续查询请求的执行速度。

而query DSL不仅要查找匹配的文档,还需要计算每个文件的相关度分值,因此为更重量级的查询,其查询结果不会被缓存。

不过,得益于倒排索引,一个仅返回少量文档的简单query或许比一个跨数百万文档的filter执行起来并得显得更慢。

Elasticsearch支持许多的query和filter,但最常用的也不过几种。

Filter DSL中常见的有term Filter、terms Filter、range Filter、exists and missing Filters和bool Filter。

而Query DSL中常见的有match_all、match 、multi_match及bool Query。鉴于时间关系,这里不再细述,朋友们可参考官方文档学习。

Queries用于查询上下文,而filters用于过滤上下文,不过,Elasticsearch的API也支持此二者合并运行。

组合查询可用于合并查询子句,组合过滤用于合并过滤子句,然而,Elasticsearch的使用习惯中,也常会把filter用于query上进行过滤。不过,很少有机会需要把query用于filter上的。

这两年,IT行业面临经济周期波动与AI产业结构调整的双重压力,确实有很多运维与网络工程师因企业缩编或技术迭代而暂时失业。

很多人都在提运维网工失业后就只能去跑滴滴送外卖了,但我想分享的是,对于运维人员来说,即便失业以后仍然有很多副业可以尝试。

运维副业方向

运维,千万不要再错过这些副业机会!

第一个是知识付费类副业:输出经验打造个人IP

在线教育平台讲师

操作路径:在慕课网、极客时间等平台开设《CCNA实战》《Linux运维从入门到精通》等课程,或与培训机构合作录制专题课。
收益模式:课程销售分成、企业内训。

技术博客与公众号运营

操作路径:撰写网络协议解析、故障排查案例、设备评测等深度文章,通过公众号广告、付费专栏及企业合作变现。
收益关键:每周更新2-3篇原创,结合SEO优化与社群运营。

第二个是技术类副业:深耕专业领域变现

企业网络设备配置与优化服务

操作路径:为中小型企业提供路由器、交换机、防火墙等设备的配置调试、性能优化及故障排查服务。可通过本地IT服务公司合作或自建线上接单平台获客。
收益模式:按项目收费或签订年度维护合同。

远程IT基础设施代维

操作路径:通过承接服务器监控、日志分析、备份恢复等远程代维任务。适合熟悉Zabbix、ELK等技术栈的工程师。
收益模式:按工时计费或包月服务。

网络安全顾问与渗透测试

操作路径:利用OWASP Top 10漏洞分析、Nmap/BurpSuite等工具,为企业提供漏洞扫描、渗透测试及安全加固方案。需考取CISP等认证提升资质。
收益模式:单次渗透测试报告收费;长期安全顾问年费。

比如不久前跟我一起聊天的一个粉丝,他自己之前是大四实习的时候做的运维,发现运维7*24小时待命受不了,就准备转网安,学了差不多2个月,然后开始挖漏洞,光是补天的漏洞奖励也有个四五千,他说自己每个月的房租和饭钱就够了。

在这里插入图片描述

为什么我会推荐你网安是运维人员的绝佳副业&转型方向?

1.你的经验是巨大优势: 你比任何人都懂系统、网络和架构。漏洞挖掘、内网渗透、应急响应,这些核心安全能力本质上是“攻击视角下的运维”。你的运维背景不是从零开始,而是降维打击。

2.越老越吃香,规避年龄危机: 安全行业极度依赖经验。你的排查思路、风险意识和对复杂系统的理解能力,会随着项目积累而愈发珍贵,真正做到“姜还是老的辣”。

3.职业选择极其灵活: 你可以加入企业成为安全专家,可以兼职“挖洞“获取丰厚奖金,甚至可以成为自由顾问。这种多样性为你提供了前所未有的抗风险能力。

4.市场需求爆发,前景广阔: 在国家级政策的推动下,从一线城市到二三线地区,安全人才缺口正在急剧扩大。现在布局,正是抢占未来先机的黄金时刻。

在这里插入图片描述

运维转行学习路线

在这里插入图片描述

(一)第一阶段:网络安全筑基

1. 阶段目标

你已经有运维经验了,所以操作系统、网络协议这些你不是零基础。但要学安全,得重新过一遍——只不过这次我们是带着“安全视角”去学。

2. 学习内容

**操作系统强化:**你需要重点学习 Windows、Linux 操作系统安全配置,对比运维工作中常规配置与安全配置的差异,深化系统安全认知(比如说日志审计配置,为应急响应日志分析打基础)。

**网络协议深化:**结合过往网络协议应用经验,聚焦 TCP/IP 协议簇中的安全漏洞及防护机制,如 ARP 欺骗、TCP 三次握手漏洞等(为 SRC 漏扫中协议层漏洞识别铺垫)。

**Web 与数据库基础:**补充 Web 架构、HTTP 协议及 MySQL、SQL Server 等数据库安全相关知识,了解 Web 应用与数据库在网安中的作用。

**编程语言入门:**学习 Python 基础语法,掌握简单脚本编写,为后续 SRC 漏扫自动化脚本开发及应急响应工具使用打基础。

**工具实战:**集中训练抓包工具(Wireshark)、渗透测试工具(Nmap)、漏洞扫描工具(Nessus 基础版)的使用,结合模拟场景练习工具应用(掌握基础扫描逻辑,为 SRC 漏扫工具进阶做准备)。

(二)第二阶段:漏洞挖掘与 SRC 漏扫实战

1. 阶段目标

这阶段是真正开始“动手”了。信息收集、漏洞分析、工具联动,一样不能少。

熟练运用漏洞挖掘及 SRC 漏扫工具,具备独立挖掘常见漏洞及 SRC 平台漏扫实战能力,尝试通过 SRC 挖洞搞钱,不管是低危漏洞还是高危漏洞,先挖到一个。

2. 学习内容

信息收集实战:结合运维中对网络拓扑、设备信息的了解,强化基本信息收集、网络空间搜索引擎(Shodan、ZoomEye)、域名及端口信息收集技巧,针对企业级网络场景开展信息收集练习(为 SRC 漏扫目标筛选提供支撑)。

漏洞原理与分析:深入学习 SQL 注入、CSRF、文件上传等常见漏洞的原理、危害及利用方法,结合运维工作中遇到的类似问题进行关联分析(明确 SRC 漏扫重点漏洞类型)。

工具进阶与 SRC 漏扫应用:

  • 系统学习 SQLMap、BurpSuite、AWVS 等工具的高级功能,开展工具联用实战训练;

  • 专项学习 SRC 漏扫流程:包括 SRC 平台规则解读(如漏洞提交规范、奖励机制)、漏扫目标范围界定、漏扫策略制定(全量扫描 vs 定向扫描)、漏扫结果验证与复现;

  • 实战训练:使用 AWVS+BurpSuite 组合开展 SRC 平台目标漏扫,练习 “扫描 - 验证 - 漏洞报告撰写 - 平台提交” 全流程。
    SRC 实战演练:选择合适的 SRC 平台(如补天、CNVD)进行漏洞挖掘与漏扫实战,积累实战经验,尝试获取挖洞收益。

恭喜你,如果学到这里,你基本可以下班搞搞副业创收了,并且具备渗透测试工程师必备的「渗透技巧」、「溯源能力」,让你在黑客盛行的年代别背锅,工作实现升职加薪的同时也能开创副业创收!

如果你想要入坑黑客&网络安全,笔者给大家准备了一份:全网最全的网络安全资料包需要保存下方图片,微信扫码即可前往获取!

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

优快云大礼包:《黑客&网络安全入门&进阶学习资源包》免费分享

(三)第三阶段:渗透测试技能学习

1. 阶段目标

全面掌握渗透测试理论与实战技能,能够独立完成渗透测试项目,编写规范的渗透测试报告,具备渗透测试工程师岗位能力,为护网红蓝对抗及应急响应提供技术支撑。

2. 学习内容

渗透测试核心理论:系统学习渗透测试流程、方法论及法律法规知识,明确渗透测试边界与规范(与红蓝对抗攻击边界要求一致)。

实战技能训练:开展漏洞扫描、漏洞利用、电商系统渗透测试、内网渗透、权限提升(Windows、Linux)、代码审计等实战训练,结合运维中熟悉的系统环境设计测试场景(强化红蓝对抗攻击端技术能力)。

工具开发实践:基于 Python 编程基础,学习渗透测试工具开发技巧,开发简单的自动化测试脚本(可拓展用于 SRC 漏扫自动化及应急响应辅助工具)。

报告编写指导:学习渗透测试报告的结构与编写规范,完成多个不同场景的渗透测试报告撰写练习(与 SRC 漏洞报告、应急响应报告撰写逻辑互通)。

(四)第四阶段:企业级安全攻防(含红蓝对抗)、应急响应

1. 阶段目标

掌握企业级安全攻防、护网红蓝对抗及应急响应核心技能,考取网安行业相关证书。

2. 学习内容

护网红蓝对抗专项:

  • 红蓝对抗基础:学习护网行动背景、红蓝对抗规则(攻击范围、禁止行为)、红蓝双方角色职责(红队:模拟攻击;蓝队:防御检测与应急处置);

  • 红队实战技能:强化内网渗透、横向移动、权限维持、免杀攻击等高级技巧,模拟护网中常见攻击场景;

  • 蓝队实战技能:学习安全设备(防火墙、IDS/IPS、WAF)联动防御配置、安全监控平台(SOC)使用、攻击行为研判与溯源方法;

  • 模拟护网演练:参与团队式红蓝对抗演练,完整体验 “攻击 - 检测 - 防御 - 处置” 全流程。
    应急响应专项:

  • 应急响应流程:学习应急响应 6 步流程(准备 - 检测 - 遏制 - 根除 - 恢复 - 总结),掌握各环节核心任务;

  • 实战技能:开展操作系统入侵响应(如病毒木马清除、异常进程终止)、数据泄露应急处置、漏洞应急修补等实战训练;

  • 工具应用:学习应急响应工具(如 Autoruns、Process Monitor、病毒分析工具)的使用,提升处置效率;

  • 案例复盘:分析真实网络安全事件应急响应案例(如勒索病毒事件),总结处置经验。
    其他企业级攻防技能:学习社工与钓鱼、CTF 夺旗赛解析等内容,结合运维中企业安全防护需求深化理解。

证书备考:针对网安行业相关证书考试内容(含红蓝对抗、应急响应考点)进行专项复习,参加模拟考试,查漏补缺。

运维转行网络攻防知识库分享

网络安全这行,不是会几个工具就能搞定的。你得有体系,懂原理,能实战。尤其是从运维转过来的,别浪费你原来的经验——你比纯新人强多了。

但也要沉得住气,别学了两天Web安全就觉得自己是黑客了。内网、域渗透、代码审计、应急响应,要学的还多着呢。

如果你真的想转,按这个路子一步步走,没问题。如果你只是好奇,我劝你再想想——这行要持续学习,挺累的,但也是真有意思。

关于如何学习网络安全,笔者也给大家整理好了全套网络安全知识库,需要的可以扫码获取!

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

优快云大礼包:《黑客&网络安全入门&进阶学习资源包》免费分享

1、网络安全意识
在这里插入图片描述

2、Linux操作系统
在这里插入图片描述

3、WEB架构基础与HTTP协议
在这里插入图片描述

4、Web渗透测试
在这里插入图片描述

5、渗透测试案例分享
在这里插入图片描述

6、渗透测试实战技巧
在这里插入图片描述

7、攻防对战实战
在这里插入图片描述

8、CTF之MISC实战讲解
在这里插入图片描述

关于如何学习网络安全,笔者也给大家整理好了全套网络安全知识库,需要的可以扫码获取!

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

优快云大礼包:《黑客&网络安全入门&进阶学习资源包》免费分享

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值