线程锁Lock和Synchronized的使用

本文详细对比了Java中synchronized关键字与Lock接口的区别,包括锁的获取与释放方式、可重入性、中断响应及公平性等特性,并通过示例代码展示了Lock的具体应用。

 一、两者区别
类别synchronizedLock
存在层次Java的关键字,在jvm层面上是一个类
锁的释放1、以获取锁的线程执行完同步代码,释放锁 2、线程执行发生异常,jvm会让线程释放锁在finally中必须释放锁,不然容易造成线程死锁
锁的获取假设A线程获得锁,B线程等待。如果A线程阻塞,B线程会一直等待分情况而定,Lock有多个锁获取的方式,具体下面会说道,大致就是可以尝试获得锁,线程可以不用一直等待
锁状态无法判断可以判断
锁类型可重入 不可中断 非公平可重入 可判断 可公平(两者皆可)
性能少量同步大量同步

Lock方法的详解:

  • lock():获取锁,如果锁被暂用则一直等待

  • unlock():释放锁

  • tryLock(): 注意返回类型是boolean,如果获取锁的时候锁被占用就返回false,否则返回true

  • tryLock(long time, TimeUnit unit):比起tryLock()就是给了一个时间期限,保证等待参数时间

  • lockInterruptibly():用该锁的获得方式,如果线程在获取锁的阶段进入了等待,那么可以中断此线程,先去做别的事

2、lock的线程中的使用

// 自定义一个类,保存锁和待执行的任务
class Outputer {
    Lock lock = new ReentrantLock(); //定义一个锁,Lock是个接口,需实例化一个具体的Lock
    //字符串打印方法,一个个字符的打印
    public void output(String name) {


        int len = name.length();
        lock.lock();
        try {
            for (int i = 0; i < len; i++) {
                System.out.print(name.charAt(i));
            }
            System.out.println("");
        } finally {
            lock.unlock(); //try起来的原因是万一一个线程进去了然后挂了或者抛异常了,那么这个锁根本没有释放
        }
    }

 }

 public void init(){
 final Outputer outputer = new Outputer();
 new Thread(new Runnable() {

@Override
public void run() {
while(true){
try {
Thread.sleep(5);

} catch (InterruptedException e) {
e.printStackTrace();
}
outputer.output("dayin111111");
}

}
}).start();
 
 new Thread(new Runnable() {

@Override
public void run() {
while(true){
try {
Thread.sleep(5);

} catch (InterruptedException e) {
e.printStackTrace();
}
outputer.output("dayin2222222");
}

}
}).start();

  }

用main方法执行,可以对unLock释放锁注释,验证两个线程的运行结果。

【四轴飞行器】非线性三自由度四轴飞行器模拟器研究(Matlab代码实现)内容概要:本文围绕非线性三自由度四轴飞行器的建模与仿真展开,重点介绍了基于Matlab的飞行器动力学模型构建与控制系统设计方法。通过对四轴飞行器非线性运动方程的推导,建立其在三维空间中的姿态与位置动态模型,并采用数值仿真手段实现飞行器在复杂环境下的行为模拟。文中详细阐述了系统状态方程的构建、控制输入设计以及仿真参数设置,并结合具体代码实现展示了如何对飞行器进行稳定控制与轨迹跟踪。此外,文章还提到了多种优化与控制策略的应用背景,如模型预测控制、PID控制等,突出了Matlab工具在无人机系统仿真中的强大功能。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的高校学生、科研人员及从事无人机系统开发的工程师;尤其适合从事飞行器建模、控制算法研究及相关领域研究的专业人士。; 使用场景及目标:①用于四轴飞行器非线性动力学建模的教学与科研实践;②为无人机控制系统设计(如姿态控制、轨迹跟踪)提供仿真验证平台;③支持高级控制算法(如MPC、LQR、PID)的研究与对比分析; 阅读建议:建议读者结合文中提到的Matlab代码与仿真模型,动手实践飞行器建模与控制流程,重点关注动力学方程的实现与控制器参数调优,同时可拓展至多自由度或复杂环境下的飞行仿真研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值