前段时间,几个朋友私信我:
简历投了千百份,面了4~5家,全挂在最后一轮。是不是不会面试?
其实,他的问题我太熟悉了:简历没亮点、问到细节就卡壳、知识体系没补全……后来我把自己准备面试时沉淀下来的方法给他,他两周后就拿到 offer。
我干脆把这些东西整理成了一个「Java高级开发面试急救包」,给所有正在面试路上挣扎的人。不一定保证你100% 过,但一定能让你少踩坑。
这份 知识盲点清单 + 模拟面试实战 的资料包,你能收获什么?👇
- ✨【高并发】限流(IP、用户、应用)、熔断(错误率、流量基数、响应延迟)、降级(自动、手动、柔性)
- ✨【高性能】红包金额预拆分、Redis 多级缓存、大 Key/热 Key 拆分与散列、映射关系+本地缓存、并发队列(LinkedBlockingQueue)、Redis Pipeline 批量操作、异步化(MQ 消息、日志入库、风控防刷)、线程池优化(任务类型、拒绝策略)、RocketMQ 零丢失机制(Half 消息、本地事务回查、同步刷盘、DLedger)、幂等消费、分布式锁(Redisson 看门狗、RedLock 算法)、Redis 集群缩容与数据迁移、分批入库
- ✨【海量数据处理】日志分表分片(按年月分表、奇偶分片)、分片键设计(年月前缀+雪花算法)、跨表查询(Sharding-JDBC、离线数仓)、冷热数据分层(业务库存热点、数仓做统计分析)、大数据引擎(Hive、ClickHouse、Doris、SparkSQL、Flink)
- ✨【服务器选型】MySQL(8 核 CPU 保证线程独立、内存 50%–80% 给 Buffer Pool、ESSD 云盘 IOPS 6K–5W、100MB/s 带宽)、Redis(4–8 核高主频、内存 70%–80% 分配+预留 fork 空间、SSD/ESSD 保证持久化性能、1–10Gbps 带宽)、RocketMQ(Broker ≥8–16 核、64GB+ 内存保证 PageCache、ESSD 高 IOPS、带宽 ≥1–10Gbps)
- ✨【系统安全】网关安全(签名验签、防重放、TLS 加密)、服务器安全(SSH Key 登录、非标端口、内网隔离、堡垒机审计、最小权限、HIDS 入侵检测)、云存储安全(临时凭证、私有桶+签名 URL、文件校验与病毒扫描、异步回滚)、风控体系(实时规则、风险打分、离线复盘)、监控与审计(指标监控、日志溯源、告警止损)、测试与合规(全链路压测、安全/渗透测试、灾备演练、合规脱敏)
- ✨【数据一致性】缓存与数据库一致性(双删策略、延时双删、异步删除、binlog 订阅、重试机制)、大厂方案(Facebook 租约机制、Uber 版本号机制)、蓝绿回滚一致性(字段兼容、缓存过期/版本号隔离、消息队列兼容)、流量一致性(灰度+用户绑定、优雅下线、缓存预热+只读降级)、流程一致性(监控聚焦、资金链路兜底、自动化一键回滚)
- ✨【项目与团队管理】流程问题(联调缺失→排期兜底、需求频繁→优先级+需求池、三方对接混乱→文档化+分工)、管理问题(风险抵抗力弱→优先级/沟通/返讲/工时预警、成本超支→事前识别+过程控制+事后复盘、核心过于集中→培养备份+文档沉淀+合理排期、文档缺失→产品/技术/用户三类文档体系、培训不足→系统化入职+知识共享+工具化引导
- ✨【稳定性建设】上线三板斧(灰度发布→分批放量/AB测试/蓝绿切换,监控告警→业务/系统/中间件/链路四维监控+分级告警+收敛机制,回滚预案→代码/数据/流量一键回退+演练),线上五步闭环(快速发现→监控/日志/追踪/模拟,快速定位→链路分析/火焰图/慢SQL/流量回放,应急恢复→降级/熔断/补偿/切流,根因分析→五步归因法,长效治理→故障演练/容量规划/规范上线)

📕我是廖志伟,一名Java开发工程师、《Java项目实战——深入理解大型互联网企业通用技术》(基础篇)、(进阶篇)、(架构篇)、《解密程序员的思维密码——沟通、演讲、思考的实践》作者、清华大学出版社签约作家、Java领域优质创作者、优快云博客专家、阿里云专家博主、51CTO专家博主、产品软文专业写手、技术文章评审老师、技术类问卷调查设计师、幕后大佬社区创始人、开源项目贡献者。
📘拥有多年一线研发和团队管理经验,研究过主流框架的底层源码(Spring、SpringBoot、SpringMVC、SpringCloud、Mybatis、Dubbo、Zookeeper),消息中间件底层架构原理(RabbitMQ、RocketMQ、Kafka)、Redis缓存、MySQL关系型数据库、 ElasticSearch全文搜索、MongoDB非关系型数据库、Apache ShardingSphere分库分表读写分离、设计模式、领域驱动DDD、Kubernetes容器编排等。
📙不定期分享高并发、高可用、高性能、微服务、分布式、海量数据、性能调优、云原生、项目管理、产品思维、技术选型、架构设计、求职面试、副业思维、个人成长等内容。

🍊 Java高并发知识点之消息队列在高并发中的应用:消息队列概述
在当今的互联网时代,高并发已经成为系统性能的瓶颈之一。尤其是在Java开发领域,如何处理高并发场景下的数据传输和消息传递,成为了开发者必须面对的挑战。消息队列作为一种有效的解决方案,能够显著提高系统的吞吐量和稳定性。下面,我们将从消息队列的定义、特点以及分类三个方面,深入探讨其在高并发中的应用。
在分布式系统中,消息队列扮演着至关重要的角色。它能够将生产者产生的消息异步地传递给消费者,从而实现解耦和负载均衡。例如,在一个电商系统中,订单处理、库存更新和用户通知等操作,都可以通过消息队列来实现异步处理,避免因高并发操作导致的系统崩溃。
消息队列的特点使其在高并发场景中具有显著的应用价值。首先,消息队列能够提供高吞吐量,确保系统在高峰时段也能保持稳定运行。其次,它支持消息的持久化存储,即使系统出现故障,也不会丢失消息。此外,消息队列还支持消息的顺序性和可靠性,确保消息能够按照正确的顺序被处理。
接下来,我们将对消息队列进行分类,以便读者更好地理解其在不同场景下的应用。常见的消息队列分类包括基于内存的消息队列和基于磁盘的消息队列,以及点对点模式和发布/订阅模式等。通过了解这些分类,开发者可以根据实际需求选择合适的消息队列解决方案。
总之,消息队列作为Java高并发知识点的重要组成部分,对于提升系统性能和稳定性具有重要意义。在接下来的内容中,我们将详细探讨消息队列的定义、特点以及分类,帮助读者全面掌握这一关键技术。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、预测分析、图像识别 | | 深度学习 | 模仿人脑神经网络结构,通过多层神经网络进行学习 | 图像识别、语音识别、自然语言处理 | | 人工智能 | 模拟人类智能行为,实现智能决策和问题解决 | 自动驾驶、智能客服、智能推荐系统 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作 | | 区块链 | 基于分布式账本技术,实现数据不可篡改和透明传输 | 数字货币、供应链管理、智能合约 |
机器学习技术通过算法对数据进行深入分析,能够从数据中提取特征并形成决策模型,广泛应用于数据挖掘、预测分析和图像识别等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络结构,通过多层神经网络进行学习,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术模拟人类智能行为,实现智能决策和问题解决,在自动驾驶、智能客服和智能推荐系统等领域具有广泛应用。云计算技术通过互联网提供动态易扩展且经常是虚拟化的资源,适用于大数据存储、在线服务和远程协作等场景。区块链技术基于分布式账本技术,实现数据不可篡改和透明传输,在数字货币、供应链管理和智能合约等领域具有显著优势。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链式结构存储 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,能够从海量数据中提取有价值的信息,并据此做出智能决策。其应用领域广泛,包括但不限于数据挖掘、图像识别和自然语言处理等。深度学习作为机器学习的一种,通过模拟人脑神经网络结构,在图像识别、语音识别和自然语言处理等领域展现出强大的能力。人工智能技术旨在模拟人类智能行为,其应用场景丰富,涵盖自动驾驶、智能客服和智能家居等多个方面。云计算技术通过互联网提供动态、易扩展且虚拟化的资源,适用于大数据存储、在线服务和远程协作等场景。区块链技术作为一种分布式数据库技术,以其链式结构存储数据块,在数字货币、智能合约和供应链管理等领域具有显著优势。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线应用、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链式结构存储 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,实现从数据中学习并作出决策的能力,广泛应用于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术模拟人类智能行为,推动自动驾驶、智能客服和智能家居等领域的创新发展。云计算通过互联网提供动态易扩展的资源,支持大数据存储、在线应用和远程协作等场景。区块链技术以分布式数据库形式存储数据块,应用于数字货币、智能合约和供应链管理等。
🍊 Java高并发知识点之消息队列在高并发中的应用:常用消息队列介绍
在当今的互联网时代,高并发已经成为系统架构设计中的重要考量因素。尤其是在处理大量数据传输和消息交换的场景中,消息队列作为一种高效的解决方案,发挥着至关重要的作用。以电商系统为例,当用户在购物高峰期进行下单操作时,系统需要处理海量的订单消息,这时,如果没有有效的消息队列机制,系统可能会因为压力过大而崩溃。因此,掌握消息队列在高并发环境中的应用,对于提升系统性能和稳定性具有重要意义。
接下来,我们将详细介绍几种常用的消息队列:ActiveMQ、RabbitMQ、Kafka和RocketMQ。ActiveMQ是一款基于JMS(Java Message Service)规范的开源消息队列,它支持多种消息传输模式,适用于各种场景。RabbitMQ则是一款基于AMQP(Advanced Message Queuing Protocol)协议的消息队列,以其灵活的路由机制和可靠性著称。Kafka是由LinkedIn开发的一个分布式流处理平台,它能够处理高吞吐量的数据流,非常适合于日志聚合和实时分析。RocketMQ是阿里巴巴开源的一个高性能、高可靠的消息队列,它支持多种消息存储和检索方式,适用于大规模分布式系统。
通过学习这些消息队列的原理、配置和使用方法,读者可以了解到它们在高并发环境下的应用场景和优势。这不仅有助于提升系统架构的健壮性,还能提高开发效率,降低系统维护成本。在后续的内容中,我们将逐一深入探讨这些消息队列的特性和最佳实践,帮助读者在实际项目中更好地运用这些技术。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线应用、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链的形式连接 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,实现从数据中学习并自动做出决策。其应用广泛,包括数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术模拟人类智能行为,广泛应用于自动驾驶、智能客服和智能家居等领域。云计算通过互联网提供动态易扩展的资源,适用于大数据存储、在线应用和远程协作等场景。区块链技术作为一种分布式数据库,以链的形式连接数据块,在数字货币、智能合约和供应链管理等领域具有广泛应用。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息的方式 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链的形式连接 | 数字货币、智能合约、数据不可篡改等 |
机器学习技术通过算法对数据进行深度分析,能够从海量数据中提取有价值的信息,并据此做出智能决策。其应用领域广泛,包括但不限于数据挖掘、图像识别和自然语言处理等。深度学习作为机器学习的一种,通过模拟人脑神经网络结构,在图像识别、语音识别和自然语言处理等领域展现出强大的能力。人工智能技术旨在模拟人类智能行为,其应用场景丰富,涵盖自动驾驶、智能客服和智能家居等多个方面。云计算技术通过互联网提供动态、易扩展的虚拟化资源,适用于大数据存储、在线服务和远程协作等场景。区块链技术作为一种分布式数据库技术,以其数据不可篡改的特性,在数字货币、智能合约等领域具有广泛应用。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息的方式 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能机器人等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,具有去中心化、不可篡改等特点 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,从而实现从数据中学习并作出决策。其应用范围广泛,包括数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑处理信息的方式,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术则模拟人类智能行为,广泛应用于自动驾驶、智能客服和智能机器人等领域。云计算通过互联网提供动态易扩展的资源,适用于大数据存储、在线服务和远程协作等场景。区块链技术作为一种分布式数据库,具有去中心化和不可篡改的特点,在数字货币、智能合约和供应链管理等领域具有广泛应用前景。
| 技术名称 | 技术特点 | 应用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作 | | 区块链 | 一种分布式数据库技术,数据以块的形式存储 | 数字货币、智能合约、数据不可篡改 | | 大数据 | 指规模巨大、类型多样的数据集 | 数据挖掘、商业智能、科学研究 | | 物联网 | 通过互联网将各种信息传感设备与网络相连接,实现智能化识别、定位、跟踪、监控和管理 | 智能家居、智能交通、智能工厂 |
机器学习通过算法分析数据,实现从数据中学习并做出决策,广泛应用于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,利用神经网络模拟人脑处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术模拟人类智能行为,推动自动驾驶、智能客服和智能家居等领域的快速发展。云计算通过互联网提供动态易扩展的资源,支持大数据存储、在线服务和远程协作。区块链作为一种分布式数据库技术,以其数据不可篡改的特点,在数字货币、智能合约等领域发挥重要作用。大数据技术处理规模巨大、类型多样的数据集,助力数据挖掘、商业智能和科学研究。物联网通过互联网连接信息传感设备,实现智能化识别、定位、跟踪、监控和管理,广泛应用于智能家居、智能交通和智能工厂等领域。
🍊 Java高并发知识点之消息队列在高并发中的应用:消息队列在高并发场景下的优势
在当今的互联网时代,高并发已经成为系统架构设计中的一个重要考量因素。尤其是在Java开发领域,如何应对高并发场景下的系统性能瓶颈,成为了开发者们关注的焦点。消息队列作为一种常用的解决方案,其在高并发场景下的优势尤为显著。想象一下,在一个电商平台上,当用户发起购物请求时,系统需要处理订单、库存、支付等多个环节,如果这些环节之间缺乏有效的解耦,一旦某个环节出现性能瓶颈,整个系统都可能陷入瘫痪。而消息队列的出现,正是为了解决这一问题。
消息队列在高并发场景下的应用,主要体现在以下几个方面:解耦系统、异步处理、削峰填谷、负载均衡。首先,通过消息队列,可以将系统中的不同模块解耦,使得各个模块可以独立开发、部署和扩展,从而提高系统的整体可维护性和可扩展性。其次,消息队列支持异步处理,可以有效地降低系统间的耦合度,提高系统的响应速度。再者,消息队列能够实现削峰填谷,通过缓冲消息队列中的请求,平滑系统负载,避免系统在高并发时出现性能瓶颈。最后,通过消息队列可以实现负载均衡,将请求分发到不同的处理节点,提高系统的处理能力。
接下来,我们将深入探讨这些三级标题所涉及的具体内容。首先,我们将详细解析消息队列如何实现系统解耦,以及这种解耦方式在实际开发中的应用。随后,我们将探讨消息队列在异步处理方面的优势,并分析其在提高系统性能方面的作用。此外,我们还将介绍消息队列如何实现削峰填谷,以及如何通过负载均衡来提高系统的处理能力。通过这些内容的深入学习,相信读者能够对消息队列在高并发场景下的应用有更加全面和深入的理解。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链的形式连接 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,能够从海量数据中提取有价值的信息,并据此做出智能决策。其应用范围广泛,包括数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术则模拟人类智能行为,广泛应用于自动驾驶、智能客服和智能家居等领域。云计算通过互联网提供动态易扩展的资源,适用于大数据存储、在线服务和远程协作等场景。区块链技术作为一种分布式数据库,以其去中心化、安全性和透明性等特点,在数字货币、智能合约和供应链管理等领域展现出巨大潜力。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线应用、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链的形式连接 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,实现从数据中学习并作出决策,广泛应用于数据挖掘、图像识别、自然语言处理等领域。深度学习作为机器学习的一种,通过神经网络模拟人脑处理信息,在图像识别、语音识别、自然语言处理等方面具有显著优势。人工智能技术模拟人类智能行为,推动自动驾驶、智能客服、智能家居等领域的创新发展。云计算通过互联网提供动态易扩展的资源,支持大数据存储、在线应用、远程协作等场景。区块链技术作为一种分布式数据库,以链的形式连接数据块,在数字货币、智能合约、供应链管理等方面展现出巨大潜力。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链的形式连接 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,能够从海量数据中提取有价值的信息,并据此做出智能决策。其应用范围广泛,包括但不限于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络结构,在图像识别、语音识别和自然语言处理等方面展现出强大的能力。人工智能技术旨在模拟人类智能行为,其应用场景涵盖自动驾驶、智能客服和智能家居等多个领域。云计算技术通过互联网提供动态、易扩展且虚拟化的资源,适用于大数据存储、在线服务和远程协作等场景。区块链技术作为一种分布式数据库技术,以其去中心化、安全性和透明性等特点,在数字货币、智能合约和供应链管理等领域发挥着重要作用。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、预测分析、图像识别 | | 深度学习 | 机器学习的一个子集,使用神经网络模拟人脑处理信息的方式 | 图像识别、语音识别、自然语言处理 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能推荐系统 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作 | | 区块链 | 一种分布式数据库技术,数据以块的形式存储 | 金融服务、供应链管理、版权保护 |
机器学习技术通过算法对数据进行深度分析,能够从数据中提取特征并形成决策模型,广泛应用于数据挖掘、预测分析和图像识别等领域。深度学习作为机器学习的子集,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术旨在模拟人类智能行为,其应用场景包括自动驾驶、智能客服和智能推荐系统等。云计算通过互联网提供动态、易扩展的资源,适用于大数据存储、在线服务和远程协作。区块链技术作为一种分布式数据库,以块的形式存储数据,在金融服务、供应链管理和版权保护等领域具有广泛应用。
🍊 Java高并发知识点之消息队列在高并发中的应用:消息队列在高并发场景下的挑战
在当今的互联网时代,高并发已经成为系统架构设计中的重要考量因素。尤其是在Java开发领域,如何应对高并发场景下的挑战,成为了开发者们关注的焦点。其中,消息队列作为一种常用的解决方案,在高并发场景中发挥着至关重要的作用。下面,我们将深入探讨消息队列在高并发中的应用,以及它所面临的挑战。
消息队列在高并发场景下,能够有效地缓解系统压力,提高系统的吞吐量和响应速度。然而,在实际应用中,消息队列也面临着诸多挑战,如消息丢失、消息顺序性、消息积压以及系统稳定性等问题。这些问题如果不妥善解决,将严重影响系统的正常运行和用户体验。
首先,我们需要关注的是消息丢失问题。在高并发环境下,由于网络波动、系统故障等原因,可能会导致消息在传输过程中丢失。为了解决这个问题,我们可以采用多种策略,如持久化消息、幂等性设计、消息确认机制等。
其次,消息顺序性也是高并发场景下需要考虑的问题。在分布式系统中,消息的顺序性可能会受到网络延迟、系统负载等因素的影响。为了保证消息的顺序性,我们可以采用顺序消息队列、分布式锁等技术手段。
此外,消息积压也是高并发场景下常见的问题。当系统负载过高时,消息队列可能会出现积压现象,导致系统响应缓慢。为了解决这个问题,我们可以通过调整队列大小、优化消息处理逻辑、增加处理线程等方式来缓解消息积压。
最后,系统稳定性是高并发场景下必须保证的。消息队列的稳定性直接关系到整个系统的稳定性。为了提高系统稳定性,我们需要关注消息队列的可靠性、可用性和可扩展性,确保系统在面对高并发压力时能够稳定运行。
综上所述,本文将从消息丢失、消息顺序性、消息积压和系统稳定性四个方面,详细探讨消息队列在高并发中的应用。通过学习这些知识点,读者将能够更好地应对高并发场景下的挑战,提高系统的性能和稳定性。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链的形式连接 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,实现从数据中学习并作出决策的能力,广泛应用于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面展现出强大的能力。人工智能技术模拟人类智能行为,应用于自动驾驶、智能客服和智能家居等领域,极大地推动了智能化进程。云计算通过互联网提供动态易扩展的资源,适用于大数据存储、在线服务和远程协作等场景。区块链技术作为一种分布式数据库,以链的形式连接数据块,在数字货币、智能合约和供应链管理等领域发挥着重要作用。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线应用、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链式结构存储 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,能够从海量数据中提取有价值的信息,并据此做出智能决策。其应用范围广泛,包括但不限于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络结构,在图像识别、语音识别和自然语言处理等方面展现出强大的能力。人工智能技术旨在模拟人类智能行为,其应用场景涵盖自动驾驶、智能客服和智能家居等多个领域。云计算技术通过互联网提供动态、易扩展且虚拟化的资源,适用于大数据存储、在线应用和远程协作等场景。区块链技术作为一种分布式数据库技术,以其链式结构存储数据块,在数字货币、智能合约和供应链管理等领域具有广泛应用。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能推荐等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链式结构存储 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,实现从数据中学习并作出决策,广泛应用于数据挖掘、图像识别、自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别、自然语言处理等方面表现出色。人工智能技术模拟人类智能行为,应用于自动驾驶、智能客服、智能推荐等场景。云计算通过互联网提供动态易扩展的资源,适用于大数据存储、在线服务、远程协作等。区块链技术以分布式数据库形式存储数据块,应用于数字货币、智能合约、供应链管理等。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链的形式存储 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,实现从数据中学习并作出决策的能力,广泛应用于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术模拟人类智能行为,推动自动驾驶、智能客服和智能家居等领域的创新发展。云计算通过互联网提供动态易扩展的资源,支持大数据存储、在线服务和远程协作等应用。区块链技术作为一种分布式数据库,以链的形式存储数据块,在数字货币、智能合约和供应链管理等方面具有广泛应用前景。
🍊 Java高并发知识点之消息队列在高并发中的应用:消息队列选型与优化
在当今互联网时代,高并发场景下的系统稳定性与性能优化成为了开发人员关注的焦点。以Java为例,消息队列作为一种常用的中间件技术,在高并发场景中发挥着至关重要的作用。想象一下,在一个大型电商系统中,用户下单、支付、发货等操作需要实时处理,如果没有有效的消息队列来解耦系统组件,系统将面临巨大的压力,甚至可能崩溃。因此,掌握消息队列的选型与优化策略对于确保系统在高并发环境下的稳定运行至关重要。
接下来,我们将从选型原则、性能优化、系统监控以及故障处理四个方面,深入探讨消息队列在高并发中的应用。首先,选型原则将帮助读者了解如何根据业务需求和技术架构选择合适的消息队列产品。其次,性能优化将介绍如何通过调整配置、优化代码等方式提升消息队列的性能。此外,系统监控是确保系统稳定运行的关键,我们将探讨如何通过监控手段及时发现并解决问题。最后,故障处理将指导读者在面对消息队列故障时,如何快速定位问题并进行有效处理。
通过学习这些内容,读者将能够全面掌握消息队列在高并发场景中的应用,为构建高性能、高可用的系统打下坚实的基础。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、预测分析、图像识别等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据以区块形式存储 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,能够从海量数据中提取有价值的信息,并据此做出智能决策。其应用范围广泛,包括但不限于数据挖掘、预测分析和图像识别等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术则致力于模拟人类智能行为,广泛应用于自动驾驶、智能客服和智能家居等领域。云计算通过互联网提供动态易扩展的资源,适用于大数据存储、在线服务和远程协作等场景。区块链技术作为一种分布式数据库,以区块形式存储数据,在数字货币、智能合约和供应链管理等方面具有显著优势。
| 技术名称 | 技术特点 | 应用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作 | | 区块链 | 一种分布式数据库技术,数据块以链的形式存储 | 数字货币、智能合约、数据不可篡改 | | 大数据 | 数据量巨大,无法用常规软件工具进行捕捉、管理和处理的数据集 | 智能分析、商业智能、预测建模 |
机器学习通过算法分析数据,实现从数据中学习并做出决策,广泛应用于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,利用神经网络模拟人脑处理信息,在图像识别、语音识别和自然语言处理等方面具有显著优势。人工智能技术模拟人类智能行为,推动自动驾驶、智能客服和智能家居等领域的快速发展。云计算通过互联网提供动态易扩展的资源,支持大数据存储、在线服务和远程协作。区块链作为一种分布式数据库技术,以其数据不可篡改的特性,在数字货币、智能合约等领域发挥重要作用。大数据技术处理海量数据,助力智能分析、商业智能和预测建模等应用。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链的形式连接 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,能够从海量数据中提取有价值的信息,并据此做出智能决策。其应用领域广泛,包括但不限于数据挖掘、图像识别和自然语言处理等。深度学习作为机器学习的一种,通过模拟人脑神经网络结构,在图像识别、语音识别和自然语言处理等领域展现出强大的能力。人工智能技术旨在模拟人类智能行为,其应用场景涵盖自动驾驶、智能客服和智能家居等多个领域。云计算技术通过互联网提供动态易扩展的资源,适用于大数据存储、在线服务和远程协作等场景。区块链技术作为一种分布式数据库技术,以其去中心化、安全性和透明性等特点,在数字货币、智能合约和供应链管理等领域得到广泛应用。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、预测分析、图像识别 | | 深度学习 | 机器学习的一个子集,使用神经网络模拟人脑处理信息的方式 | 图像识别、语音识别、自然语言处理 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作 | | 区块链 | 一种分布式数据库技术,数据以块的形式存储 | 金融服务、供应链管理、版权保护 |
机器学习技术通过算法对数据进行深度分析,实现从数据中学习并作出决策的能力,广泛应用于数据挖掘、预测分析和图像识别等领域。深度学习作为机器学习的一个子集,通过模拟人脑处理信息的方式,在图像识别、语音识别和自然语言处理等方面展现出强大的能力。人工智能技术模拟人类智能行为,推动自动驾驶、智能客服和智能家居等领域的创新发展。云计算通过互联网提供动态易扩展的资源,支持大数据存储、在线服务和远程协作。区块链技术作为一种分布式数据库,以其去中心化、安全可靠的特点,在金融服务、供应链管理和版权保护等领域发挥重要作用。
🍊 Java高并发知识点之消息队列在高并发中的应用:案例分析
在电商系统中,高并发场景下如何处理大量订单的实时处理和响应,成为了一个亟待解决的问题。此时,消息队列作为一种有效的解决方案,能够显著提升系统的并发处理能力。消息队列通过异步处理消息,实现了系统的解耦,使得系统在面临高并发请求时,能够保持稳定运行。接下来,我们将从电商系统、金融系统、社交系统和物联网系统四个方面,深入探讨消息队列在高并发场景下的应用。
电商系统作为高并发场景的典型代表,其订单处理、库存管理和用户交互等环节都需要高效的消息队列支持。通过消息队列,电商系统可以实现订单的异步处理,减轻数据库的压力,提高系统的响应速度。金融系统同样面临着高并发挑战,如交易处理、资金清算等环节,消息队列的应用可以确保交易数据的准确性和一致性。
社交系统中的用户消息推送、好友关系更新等场景,也离不开消息队列的支持。通过消息队列,社交系统可以实现消息的异步分发,提高系统的吞吐量。物联网系统中的设备数据采集、处理和传输,同样需要高效的消息队列来保证数据的实时性和准确性。
在后续的内容中,我们将分别针对这四个系统,详细分析消息队列在高并发场景下的具体应用,包括其架构设计、性能优化和故障处理等方面。通过学习这些内容,读者将能够深入了解消息队列在各个领域的应用,为实际项目开发提供有力的技术支持。
| 技术名称 | 功能描述 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、预测分析、图像识别 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息的方式 | 图像识别、语音识别、自然语言处理 | | 人工智能 | 使机器能够模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作 | | 大数据 | 指规模巨大、类型多样的数据集 | 数据挖掘、商业智能、科学研究 |
机器学习技术通过算法对数据进行深度分析,能够从数据中提取特征并形成决策模型,广泛应用于数据挖掘、预测分析和图像识别等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术旨在使机器模拟人类智能行为,其应用场景包括自动驾驶、智能客服和智能家居等。云计算通过互联网提供动态、易扩展的资源,适用于大数据存储、在线服务和远程协作。大数据技术处理规模巨大、类型多样的数据集,在数据挖掘、商业智能和科学研究等领域发挥重要作用。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链的形式存储 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,实现从数据中学习并作出决策的能力,广泛应用于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术模拟人类智能行为,推动自动驾驶、智能客服和智能家居等领域的创新发展。云计算通过互联网提供动态易扩展的资源,支持大数据存储、在线服务和远程协作等应用。区块链技术作为一种分布式数据库,以链的形式存储数据块,在数字货币、智能合约和供应链管理等方面具有广泛应用前景。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、预测分析、图像识别 | | 深度学习 | 模仿人脑神经网络结构,通过多层神经网络进行学习 | 图像识别、语音识别、自然语言处理 | | 人工智能 | 模拟人类智能行为,实现智能决策和问题解决 | 自动驾驶、智能客服、智能家居 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作 | | 区块链 | 基于分布式账本技术,实现数据不可篡改和透明性 | 数字货币、供应链管理、智能合约 |
机器学习技术通过算法对数据进行深度分析,能够从海量数据中提取有价值的信息,进而实现决策优化。其广泛应用于数据挖掘、预测分析和图像识别等领域,为各行业提供智能化解决方案。
深度学习技术模仿人脑神经网络结构,通过多层神经网络进行学习,具有强大的特征提取和模式识别能力。在图像识别、语音识别和自然语言处理等领域表现出色,推动人工智能技术不断进步。
人工智能技术模拟人类智能行为,实现智能决策和问题解决。在自动驾驶、智能客服和智能家居等领域,人工智能技术正逐渐改变人们的生活方式,提高生产效率。
云计算技术通过互联网提供动态易扩展且经常是虚拟化的资源,具有高效、灵活和可扩展的特点。在大数据存储、在线服务和远程协作等方面发挥着重要作用,助力企业实现数字化转型。
区块链技术基于分布式账本技术,实现数据不可篡改和透明性。在数字货币、供应链管理和智能合约等领域具有广泛应用前景,为构建可信、安全的网络环境提供技术支持。
| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线应用、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链的形式存储 | 数字货币、智能合约、供应链管理等 |
机器学习技术通过算法对数据进行深度分析,实现从数据中学习并作出决策的能力,广泛应用于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术旨在模拟人类智能行为,其应用场景包括自动驾驶、智能客服和智能家居等。云计算通过互联网提供动态易扩展的资源,适用于大数据存储、在线应用和远程协作等场景。区块链技术作为一种分布式数据库,以链的形式存储数据块,在数字货币、智能合约和供应链管理等领域具有广泛应用。

博主分享
📥博主的人生感悟和目标

📙经过多年在优快云创作上千篇文章的经验积累,我已经拥有了不错的写作技巧。同时,我还与清华大学出版社签下了四本书籍的合约,并将陆续出版。
- 《Java项目实战—深入理解大型互联网企业通用技术》基础篇的购书链接:https://item.jd.com/14152451.html
- 《Java项目实战—深入理解大型互联网企业通用技术》基础篇繁体字的购书链接:http://product.dangdang.com/11821397208.html
- 《Java项目实战—深入理解大型互联网企业通用技术》进阶篇的购书链接:https://item.jd.com/14616418.html
- 《Java项目实战—深入理解大型互联网企业通用技术》架构篇待上架
- 《解密程序员的思维密码--沟通、演讲、思考的实践》购书链接:https://item.jd.com/15096040.html
面试备战资料
八股文备战
| 场景 | 描述 | 链接 |
|---|---|---|
| 时间充裕(25万字) | Java知识点大全(高频面试题) | Java知识点大全 |
| 时间紧急(15万字) | Java高级开发高频面试题 | Java高级开发高频面试题 |
理论知识专题(图文并茂,字数过万)
| 技术栈 | 链接 |
|---|---|
| RocketMQ | RocketMQ详解 |
| Kafka | Kafka详解 |
| RabbitMQ | RabbitMQ详解 |
| MongoDB | MongoDB详解 |
| ElasticSearch | ElasticSearch详解 |
| Zookeeper | Zookeeper详解 |
| Redis | Redis详解 |
| MySQL | MySQL详解 |
| JVM | JVM详解 |
集群部署(图文并茂,字数过万)
| 技术栈 | 部署架构 | 链接 |
|---|---|---|
| MySQL | 使用Docker-Compose部署MySQL一主二从半同步复制高可用MHA集群 | Docker-Compose部署教程 |
| Redis | 三主三从集群(三种方式部署/18个节点的Redis Cluster模式) | 三种部署方式教程 |
| RocketMQ | DLedger高可用集群(9节点) | 部署指南 |
| Nacos+Nginx | 集群+负载均衡(9节点) | Docker部署方案 |
| Kubernetes | 容器编排安装 | 最全安装教程 |
开源项目分享
| 项目名称 | 链接地址 |
|---|---|
| 高并发红包雨项目 | https://gitee.com/java_wxid/red-packet-rain |
| 微服务技术集成demo项目 | https://gitee.com/java_wxid/java_wxid |
管理经验
【公司管理与研发流程优化】针对研发流程、需求管理、沟通协作、文档建设、绩效考核等问题的综合解决方案:https://download.youkuaiyun.com/download/java_wxid/91148718
希望各位读者朋友能够多多支持!
现在时代变了,信息爆炸,酒香也怕巷子深,博主真的需要大家的帮助才能在这片海洋中继续发光发热,所以,赶紧动动你的小手,点波关注❤️,点波赞👍,点波收藏⭐,甚至点波评论✍️,都是对博主最好的支持和鼓励!
- 💂 博客主页: Java程序员廖志伟
- 👉 开源项目:Java程序员廖志伟
- 🌥 哔哩哔哩:Java程序员廖志伟
- 🎏 个人社区:Java程序员廖志伟
- 🔖 个人微信号:
SeniorRD
🔔如果您需要转载或者搬运这篇文章的话,非常欢迎您私信我哦~
Java高并发中消息队列应用

650

被折叠的 条评论
为什么被折叠?



