Java高并发:令牌桶算法原理与应用

前段时间,几个朋友私信我:

简历投了千百份,面了4~5家,全挂在最后一轮。是不是不会面试?

其实,他的问题我太熟悉了:简历没亮点、问到细节就卡壳、知识体系没补全……后来我把自己准备面试时沉淀下来的方法给他,他两周后就拿到 offer。

我干脆把这些东西整理成了一个「Java高级开发面试急救包」,给所有正在面试路上挣扎的人。不一定保证你100% 过,但一定能让你少踩坑。

Java程序员廖志伟

这份 知识盲点清单 + 模拟面试实战 的资料包,你能收获什么?👇

  • ✨【高并发】限流(IP、用户、应用)、熔断(错误率、流量基数、响应延迟)、降级(自动、手动、柔性)
  • ✨【高性能】红包金额预拆分、Redis 多级缓存、大 Key/热 Key 拆分与散列、映射关系+本地缓存、并发队列(LinkedBlockingQueue)、Redis Pipeline 批量操作、异步化(MQ 消息、日志入库、风控防刷)、线程池优化(任务类型、拒绝策略)、RocketMQ 零丢失机制(Half 消息、本地事务回查、同步刷盘、DLedger)、幂等消费、分布式锁(Redisson 看门狗、RedLock 算法)、Redis 集群缩容与数据迁移、分批入库
  • ✨【海量数据处理】日志分表分片(按年月分表、奇偶分片)、分片键设计(年月前缀+雪花算法)、跨表查询(Sharding-JDBC、离线数仓)、冷热数据分层(业务库存热点、数仓做统计分析)、大数据引擎(Hive、ClickHouse、Doris、SparkSQL、Flink)
  • ✨【服务器选型】MySQL(8 核 CPU 保证线程独立、内存 50%–80% 给 Buffer Pool、ESSD 云盘 IOPS 6K–5W、100MB/s 带宽)、Redis(4–8 核高主频、内存 70%–80% 分配+预留 fork 空间、SSD/ESSD 保证持久化性能、1–10Gbps 带宽)、RocketMQ(Broker ≥8–16 核、64GB+ 内存保证 PageCache、ESSD 高 IOPS、带宽 ≥1–10Gbps)
  • ✨【系统安全】网关安全(签名验签、防重放、TLS 加密)、服务器安全(SSH Key 登录、非标端口、内网隔离、堡垒机审计、最小权限、HIDS 入侵检测)、云存储安全(临时凭证、私有桶+签名 URL、文件校验与病毒扫描、异步回滚)、风控体系(实时规则、风险打分、离线复盘)、监控与审计(指标监控、日志溯源、告警止损)、测试与合规(全链路压测、安全/渗透测试、灾备演练、合规脱敏)
  • ✨【数据一致性】缓存与数据库一致性(双删策略、延时双删、异步删除、binlog 订阅、重试机制)、大厂方案(Facebook 租约机制、Uber 版本号机制)、蓝绿回滚一致性(字段兼容、缓存过期/版本号隔离、消息队列兼容)、流量一致性(灰度+用户绑定、优雅下线、缓存预热+只读降级)、流程一致性(监控聚焦、资金链路兜底、自动化一键回滚)
  • ✨【项目与团队管理】流程问题(联调缺失→排期兜底、需求频繁→优先级+需求池、三方对接混乱→文档化+分工)、管理问题(风险抵抗力弱→优先级/沟通/返讲/工时预警、成本超支→事前识别+过程控制+事后复盘、核心过于集中→培养备份+文档沉淀+合理排期、文档缺失→产品/技术/用户三类文档体系、培训不足→系统化入职+知识共享+工具化引导
  • ✨【稳定性建设】上线三板斧(灰度发布→分批放量/AB测试/蓝绿切换,监控告警→业务/系统/中间件/链路四维监控+分级告警+收敛机制,回滚预案→代码/数据/流量一键回退+演练),线上五步闭环(快速发现→监控/日志/追踪/模拟,快速定位→链路分析/火焰图/慢SQL/流量回放,应急恢复→降级/熔断/补偿/切流,根因分析→五步归因法,长效治理→故障演练/容量规划/规范上线)优快云

📕我是廖志伟,一名Java开发工程师、《Java项目实战——深入理解大型互联网企业通用技术》(基础篇)(进阶篇)、(架构篇)、《解密程序员的思维密码——沟通、演讲、思考的实践》作者、清华大学出版社签约作家、Java领域优质创作者、优快云博客专家、阿里云专家博主、51CTO专家博主、产品软文专业写手、技术文章评审老师、技术类问卷调查设计师、幕后大佬社区创始人、开源项目贡献者。

📘拥有多年一线研发和团队管理经验,研究过主流框架的底层源码(Spring、SpringBoot、SpringMVC、SpringCloud、Mybatis、Dubbo、Zookeeper),消息中间件底层架构原理(RabbitMQ、RocketMQ、Kafka)、Redis缓存、MySQL关系型数据库、 ElasticSearch全文搜索、MongoDB非关系型数据库、Apache ShardingSphere分库分表读写分离、设计模式、领域驱动DDD、Kubernetes容器编排等。

📙不定期分享高并发、高可用、高性能、微服务、分布式、海量数据、性能调优、云原生、项目管理、产品思维、技术选型、架构设计、求职面试、副业思维、个人成长等内容。

Java程序员廖志伟

🍊 Java高并发知识点之令牌桶算法:算法概述

在当今的互联网时代,高并发已经成为系统性能的关键考量因素。以Java为例,在高并发场景下,合理地控制并发访问是保证系统稳定运行的关键。其中,令牌桶算法作为一种重要的流量控制机制,在Java高并发编程中扮演着至关重要的角色。想象一下,在一个高流量的Web服务中,如何有效地控制请求的速率,防止系统过载,这就是令牌桶算法要解决的问题。

令牌桶算法通过模拟一个桶,桶中存放令牌,每个令牌代表一次请求的权限。系统在处理请求时,需要从桶中取出令牌,如果没有令牌,则请求被拒绝。这种机制能够有效地控制请求的速率,防止系统因请求过多而崩溃。在实际开发中,令牌桶算法的应用场景十分广泛,如限流、防止DDoS攻击等。

接下来,我们将深入探讨令牌桶算法的三个关键方面:算法定义、算法原理以及算法特点。首先,我们将明确令牌桶算法的定义,了解其基本概念和运作机制。随后,我们将深入剖析算法原理,揭示其背后的数学模型和逻辑关系。最后,我们将总结算法特点,分析其在实际应用中的优势和局限性。通过这些内容的学习,读者将能够全面掌握令牌桶算法,并将其应用于解决Java高并发场景下的实际问题。

| 技术名称 | 技术特点 | 应用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理 | | 深度学习 | 机器学习的一个子集,使用神经网络模拟人脑处理信息的方式 | 图像识别、语音识别、自然语言处理 | | 人工智能 | 一种模拟人类智能的技术,包括学习、推理、感知等能力 | 自动驾驶、智能客服、智能家居 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作 | | 区块链 | 一种分布式数据库技术,用于创建加密的数字货币和智能合约 | 数字货币、供应链管理、数据不可篡改 | | 大数据 | 指规模巨大、类型多样的数据集,需要特殊的技术和方法来处理 | 智能分析、市场预测、风险管理 |

机器学习通过算法分析数据,实现从数据中学习并做出决策,广泛应用于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一个子集,利用神经网络模拟人脑处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术模拟人类智能,涵盖学习、推理和感知等能力,被应用于自动驾驶、智能客服和智能家居等领域。云计算通过互联网提供动态易扩展的资源,适用于大数据存储、在线服务和远程协作。区块链技术作为一种分布式数据库,用于创建加密的数字货币和智能合约,在数字货币、供应链管理和数据不可篡改等方面具有广泛应用。大数据技术针对规模巨大、类型多样的数据集,采用特殊的技术和方法进行处理,在智能分析、市场预测和风险管理等方面发挥重要作用。

| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能推荐等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链式结构存储 | 数字货币、智能合约、数据不可篡改等 |

机器学习技术通过算法对数据进行深度分析,能够从海量数据中提取有价值的信息,并据此做出智能决策。其应用范围广泛,包括数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术则致力于模拟人类智能行为,广泛应用于自动驾驶、智能客服和智能推荐等领域。云计算通过互联网提供动态易扩展的资源,适用于大数据存储、在线服务和远程协作等场景。区块链技术作为一种分布式数据库,以其数据不可篡改的特性,在数字货币、智能合约等领域具有广泛应用。

| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据以区块形式存储 | 数字货币、智能合约、供应链管理等 |

机器学习技术通过算法对数据进行深度分析,实现从数据中学习并自动做出决策。其应用范围广泛,包括数据挖掘、图像识别、自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别、自然语言处理等方面表现出色。人工智能技术模拟人类智能行为,广泛应用于自动驾驶、智能客服、智能家居等领域。云计算通过互联网提供动态易扩展的资源,适用于大数据存储、在线服务、远程协作等场景。区块链技术作为一种分布式数据库,以区块形式存储数据,在数字货币、智能合约、供应链管理等方面具有广泛应用。

🍊 Java高并发知识点之令牌桶算法:实现原理

在当今的互联网时代,高并发已经成为系统性能的关键考量因素。以Java为例,在高并发场景下,合理地控制并发访问是保证系统稳定性和响应速度的关键。其中,令牌桶算法作为一种有效的流量控制机制,在Java高并发编程中扮演着重要角色。想象一下,在一个高流量的Web服务中,若没有有效的流量控制,系统可能会因为瞬间涌入的大量请求而崩溃。而令牌桶算法正是为了解决这一问题而设计的。

令牌桶算法的核心思想是,通过一个虚拟的“桶”来存储令牌,每个令牌代表一次请求的权限。系统在处理请求时,必须先从桶中获取令牌,只有获取到令牌的请求才能被处理。这种机制能够有效地控制请求的速率,防止系统过载。

接下来,我们将深入探讨令牌桶算法的核心数据结构,包括如何实现一个高效的令牌桶,以及如何管理令牌的生成与消费。此外,我们还将学习如何在Java中实现并发控制,确保系统在高并发环境下依然能够稳定运行。通过这些内容的学习,读者将能够掌握令牌桶算法的精髓,并将其应用于实际项目中,从而提升系统的性能和稳定性。

| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链的形式存储 | 数字货币、智能合约、供应链管理等 |

机器学习技术通过算法对数据进行深度分析,实现从数据中学习并自动做出决策。其广泛应用于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术模拟人类智能行为,应用于自动驾驶、智能客服和智能家居等领域。云计算通过互联网提供动态易扩展的资源,适用于大数据存储、在线服务和远程协作等场景。区块链技术作为一种分布式数据库,以链的形式存储数据块,在数字货币、智能合约和供应链管理等方面具有广泛应用。

| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链的形式连接 | 数字货币、智能合约、供应链管理等 |

机器学习技术通过算法对数据进行深入分析,从而实现从数据中学习并作出决策的能力,广泛应用于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术旨在模拟人类智能行为,其应用场景包括自动驾驶、智能客服和智能家居等。云计算通过互联网提供动态易扩展的资源,适用于大数据存储、在线服务和远程协作等场景。区块链技术作为一种分布式数据库,以链的形式连接数据块,在数字货币、智能合约和供应链管理等领域具有广泛应用。

| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链的形式连接 | 数字货币、智能合约、供应链管理等 |

机器学习技术通过算法对数据进行深度分析,实现从数据中学习并作出决策的能力,广泛应用于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术模拟人类智能行为,推动自动驾驶、智能客服和智能家居等领域的创新发展。云计算通过互联网提供动态易扩展的资源,支持大数据存储、在线服务和远程协作等应用。区块链技术作为一种分布式数据库,以链的形式连接数据块,在数字货币、智能合约和供应链管理等方面具有广泛应用前景。

🍊 Java高并发知识点之令牌桶算法:应用场景

在当今互联网高速发展的时代,高并发问题已成为许多系统面临的挑战之一。以Java为例,在高并发场景下,如何有效地控制请求流量,保证系统稳定运行,成为开发者关注的焦点。此时,令牌桶算法作为一种重要的限流策略,发挥着至关重要的作用。本文将深入探讨Java高并发知识点之令牌桶算法的应用场景,包括限流场景、流量控制场景以及资源分配场景,帮助读者全面了解并掌握这一算法。

在实际开发中,限流是保证系统稳定性的关键。例如,在秒杀活动中,系统可能会瞬间涌入大量请求,若不进行限流,服务器资源将面临巨大压力,甚至可能导致系统崩溃。令牌桶算法通过模拟一个桶,不断产生令牌,请求需要消耗令牌才能通过,从而实现对流量的控制。这种限流方式既保证了系统的响应速度,又避免了资源过度消耗。

在流量控制场景中,令牌桶算法同样表现出色。例如,在分布式系统中,各个节点之间需要通信,若不进行流量控制,可能会导致某些节点过载,影响整体性能。通过令牌桶算法,可以合理分配流量,确保系统各部分均衡运行。

此外,令牌桶算法在资源分配场景中也具有广泛的应用。在多线程环境下,资源分配成为一大难题。令牌桶算法可以根据资源需求动态调整令牌产生速度,实现资源的合理分配,提高系统效率。

本文将从限流场景、流量控制场景和资源分配场景三个方面,详细解析Java高并发知识点之令牌桶算法的应用。通过学习本文,读者将能够深入了解令牌桶算法的原理,掌握其在实际开发中的应用技巧,为解决高并发问题提供有力支持。

| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一个子集,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线应用、远程协作等 | | 区块链 | 一种分布式数据库技术,数据以块的形式存储 | 数字货币、智能合约、供应链管理等 |

机器学习技术通过算法对数据进行深度分析,实现从数据中学习并作出决策的能力,广泛应用于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一个子集,通过神经网络模拟人脑处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术模拟人类智能行为,推动自动驾驶、智能客服和智能家居等领域的创新发展。云计算通过互联网提供动态易扩展的资源,支持大数据存储、在线应用和远程协作等场景。区块链技术作为一种分布式数据库,以块的形式存储数据,在数字货币、智能合约和供应链管理等方面具有广泛应用前景。

| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、预测分析、图像识别 | | 深度学习 | 模仿人脑神经网络结构,通过多层神经网络进行学习 | 图像识别、语音识别、自然语言处理 | | 人工智能 | 模拟人类智能行为,实现智能决策和问题解决 | 自动驾驶、智能客服、智能家居 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作 | | 区块链 | 基于分布式账本技术,实现数据不可篡改和透明传输 | 数字货币、供应链管理、智能合约 |

机器学习技术通过算法对数据进行深度分析,能够从海量数据中提取有价值的信息,并据此做出智能决策。其特点在于能够自动从数据中学习,适用于数据挖掘、预测分析和图像识别等领域。例如,在金融领域,机器学习可用于风险评估和欺诈检测。

深度学习技术模仿人脑神经网络结构,通过多层神经网络进行学习,具有强大的特征提取和模式识别能力。在图像识别、语音识别和自然语言处理等领域有着广泛应用。例如,在医疗领域,深度学习可用于疾病诊断和影像分析。

人工智能技术模拟人类智能行为,实现智能决策和问题解决。其应用场景广泛,包括自动驾驶、智能客服和智能家居等。例如,在交通领域,人工智能技术可提高交通系统的智能化水平,减少交通事故。

云计算技术通过互联网提供动态易扩展且经常是虚拟化的资源,具有高效、灵活和可扩展的特点。适用于大数据存储、在线服务和远程协作等场景。例如,在远程办公领域,云计算技术可提高工作效率,降低企业成本。

区块链技术基于分布式账本技术,实现数据不可篡改和透明传输。在数字货币、供应链管理和智能合约等领域具有广泛应用。例如,在供应链管理中,区块链技术可提高供应链的透明度和安全性。

| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链式结构存储 | 数字货币、智能合约、供应链管理等 |

机器学习技术通过算法分析数据,具备从数据中学习并做出决策的能力,广泛应用于数据挖掘、图像识别、自然语言处理等领域。深度学习作为机器学习的一种,采用神经网络模拟人脑处理信息,在图像识别、语音识别、自然语言处理等方面表现出色。人工智能技术模拟人类智能行为,涉及自动驾驶、智能客服、智能家居等多个场景。云计算通过互联网提供动态易扩展且虚拟化的资源,适用于大数据存储、在线服务、远程协作等。区块链技术作为一种分布式数据库,以链式结构存储数据块,在数字货币、智能合约、供应链管理等领域具有广泛应用。

🍊 Java高并发知识点之令牌桶算法:性能分析

在当今的互联网时代,高并发已经成为系统性能的关键考量因素。以Java为例,在高并发场景下,合理地控制并发访问量对于保证系统稳定性和响应速度至关重要。其中,令牌桶算法作为一种有效的流量控制机制,在Java高并发编程中扮演着重要角色。想象一下,在一个电商平台上,当促销活动进行时,用户访问量激增,若不加以控制,系统可能会因为过载而崩溃。此时,令牌桶算法就能有效地限制并发访问量,确保系统在高负载下仍能保持稳定运行。

令牌桶算法的核心思想是,通过模拟一个桶,桶中存放令牌,每个令牌代表一次请求的权限。系统在处理请求前必须先获取一个令牌,如果没有令牌,请求就会被拒绝。这种机制能够有效地控制请求的速率,防止系统过载。在实际开发中,令牌桶算法的应用价值体现在以下几个方面:首先,它能够平滑突发流量,避免系统因瞬间高并发而崩溃;其次,它能够根据系统负载动态调整令牌的发放速率,提高系统的可用性;最后,它能够为不同类型的请求分配不同的优先级,确保关键业务得到优先处理。

接下来,我们将从吞吐量、延迟和资源消耗三个方面对Java高并发知识点之令牌桶算法进行深入分析。首先,吞吐量分析将帮助我们了解算法在不同负载下的处理能力;其次,延迟分析将揭示算法对请求响应时间的影响;最后,资源消耗分析将探讨算法对系统资源的占用情况。通过这些分析,我们将对令牌桶算法有更全面的认识,为在实际项目中应用这一算法提供理论依据。

| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息的方式 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链的形式连接 | 数字货币、智能合约、数据不可篡改等 |

机器学习技术通过算法对数据进行深度分析,实现从数据中学习并自动做出决策。其广泛应用于数据挖掘、图像识别和自然语言处理等领域,为各类智能应用提供基础支持。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术模拟人类智能行为,应用于自动驾驶、智能客服和智能家居等领域,极大地提升了人类生活的便捷性和智能化水平。云计算通过互联网提供动态易扩展的资源,适用于大数据存储、在线服务和远程协作等场景。区块链技术作为一种分布式数据库,以其数据不可篡改的特性,在数字货币、智能合约等领域展现出巨大潜力。

| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息的方式 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链的形式连接 | 数字货币、智能合约、供应链管理等 |

机器学习技术通过算法对数据进行深度分析,能够从海量数据中提取有价值的信息,并据此做出智能决策。其应用范围广泛,包括数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术旨在模拟人类智能行为,广泛应用于自动驾驶、智能客服和智能家居等领域。云计算通过互联网提供动态易扩展的资源,适用于大数据存储、在线服务和远程协作等场景。区块链技术作为一种分布式数据库,以其去中心化、安全性和透明性等特点,在数字货币、智能合约和供应链管理等领域展现出巨大潜力。

| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、预测分析、图像识别 | | 深度学习 | 机器学习的一个子集,使用神经网络模拟人脑处理信息的方式 | 图像识别、语音识别、自然语言处理 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能推荐系统 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作 | | 区块链 | 一种分布式数据库技术,数据以区块的形式存储 | 数字货币、智能合约、数据不可篡改 | | 大数据 | 指规模巨大、类型多样的数据集 | 数据挖掘、商业智能、科学研究 | | 物联网 | 通过互联网连接各种设备,实现设备间的信息交互 | 智能家居、智能交通、工业自动化 | | 5G技术 | 第五代移动通信技术,提供更高的速度和更低的延迟 | 高清视频、远程医疗、自动驾驶 | | 虚拟现实 | 通过计算机技术模拟出一个三维空间,用户可以在这个空间中交互 | 游戏娱乐、教育培训、虚拟旅游 |

机器学习技术通过算法对数据进行深度分析,能够从数据中提取特征并形成决策模型,广泛应用于数据挖掘、预测分析和图像识别等领域。深度学习作为机器学习的子集,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术旨在模拟人类智能行为,其应用场景包括自动驾驶、智能客服和智能推荐系统等。云计算通过互联网提供动态、易扩展的资源,适用于大数据存储、在线服务和远程协作。区块链技术以其分布式数据库特性,在数字货币、智能合约和数据不可篡改方面具有显著优势。大数据技术处理规模巨大、类型多样的数据集,支持数据挖掘、商业智能和科学研究。物联网通过互联网连接设备,实现信息交互,应用领域涵盖智能家居、智能交通和工业自动化。5G技术提供高速率和低延迟的通信服务,支持高清视频、远程医疗和自动驾驶等应用。虚拟现实技术通过计算机模拟三维空间,为游戏娱乐、教育培训和虚拟旅游等领域提供沉浸式体验。

🍊 Java高并发知识点之令牌桶算法:优缺点

在当今的互联网时代,高并发已经成为系统性能的关键考量因素。以Java为例,在高并发场景下,合理地控制并发访问是保证系统稳定性和响应速度的关键。其中,令牌桶算法作为一种重要的流量控制机制,在Java高并发编程中扮演着至关重要的角色。想象一下,在一个高流量的Web服务中,若没有有效的流量控制,系统可能会因为瞬间涌入的大量请求而崩溃。而令牌桶算法正是为了解决这一问题而设计的。它通过模拟一个桶,桶中存放着令牌,请求处理前必须先获取令牌,从而实现对请求流量的控制。这种算法在实际开发中具有显著的应用价值,它不仅能够有效防止系统过载,还能保证系统的公平性和稳定性。接下来,我们将深入探讨令牌桶算法的优点和缺点,帮助读者全面了解这一知识点。在后续的内容中,我们将首先分析令牌桶算法的优点,包括其如何提高系统吞吐量和响应速度,以及如何更好地适应动态变化的流量需求。随后,我们将讨论令牌桶算法的缺点,包括其可能带来的性能损耗和实现复杂性。通过这些详细的分析,读者将能够对令牌桶算法有一个全面而深入的理解。

| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线应用、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链的形式连接 | 数字货币、智能合约、供应链管理等 |

机器学习技术通过算法对数据进行深度分析,实现从数据中学习并作出决策的能力,广泛应用于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术模拟人类智能行为,推动自动驾驶、智能客服和智能家居等领域的创新发展。云计算通过互联网提供动态易扩展的资源,支持大数据存储、在线应用和远程协作等场景。区块链技术作为一种分布式数据库,以链的形式连接数据块,在数字货币、智能合约和供应链管理等领域发挥重要作用。

| 技术名称 | 技术特点 | 应用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理 | | 深度学习 | 机器学习的一个子集,使用神经网络模拟人脑处理信息的方式 | 图像识别、语音识别、自然语言处理 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作 | | 区块链 | 一种分布式数据库技术,数据以块的形式存储 | 数字货币、智能合约、数据不可篡改 | | 大数据 | 指规模巨大、类型多样的数据集 | 数据分析、商业智能、科学研究 | | 物联网 | 通过互联网连接各种设备,实现设备间的信息交互 | 智能家居、智能交通、工业自动化 |

机器学习通过算法分析数据,实现从数据中学习并做出决策,广泛应用于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一个子集,利用神经网络模拟人脑处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术模拟人类智能行为,推动自动驾驶、智能客服和智能家居等领域的快速发展。云计算通过互联网提供动态易扩展的资源,支持大数据存储、在线服务和远程协作。区块链技术以分布式数据库形式存储数据,确保数据不可篡改,应用于数字货币、智能合约等领域。大数据技术处理规模巨大、类型多样的数据集,助力数据分析、商业智能和科学研究。物联网通过互联网连接设备,实现信息交互,广泛应用于智能家居、智能交通和工业自动化等领域。

🍊 Java高并发知识点之令牌桶算法:与其他限流算法比较

在当今的互联网时代,高并发已经成为系统性能的瓶颈之一。尤其是在Java开发领域,如何有效地控制并发访问,保证系统的稳定性和响应速度,成为了开发者关注的焦点。其中,令牌桶算法作为一种重要的限流机制,在Java高并发编程中扮演着至关重要的角色。本文将深入探讨Java高并发知识点之令牌桶算法,并与漏桶算法等其他限流算法进行比较,旨在帮助读者全面理解并掌握这一核心概念。

在实际开发中,我们常常会遇到系统负载过高,导致响应缓慢甚至崩溃的情况。这时,限流算法就能发挥其重要作用。令牌桶算法通过模拟一个桶,桶中存放着一定数量的令牌,请求访问系统时需要消耗一个令牌,从而实现对并发访问的流量控制。与漏桶算法相比,令牌桶算法允许一定程度的突发流量,更加灵活地适应实际需求。

接下来,我们将从以下几个方面对令牌桶算法进行详细解析:首先,我们将比较令牌桶算法与漏桶算法的异同,分析它们在不同场景下的适用性;其次,我们将深入探讨令牌桶算法的实现原理,包括令牌的生成、消耗和回收等环节;最后,我们将总结令牌桶算法与其他限流算法的比较,帮助读者更好地选择合适的限流策略。通过本文的学习,读者将能够深入理解令牌桶算法的核心知识,并将其应用于实际项目中,提升系统的并发处理能力。

| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线应用、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链式结构存储 | 数字货币、智能合约、供应链管理等 |

机器学习技术通过算法分析数据,具备从数据中学习并做出决策的能力,广泛应用于数据挖掘、图像识别、自然语言处理等领域。深度学习作为机器学习的一种,通过神经网络模拟人脑处理信息,在图像识别、语音识别、自然语言处理等方面表现出色。人工智能技术模拟人类智能行为,应用于自动驾驶、智能客服、智能家居等多个场景。云计算通过互联网提供动态易扩展且经常是虚拟化的资源,适用于大数据存储、在线应用、远程协作等。区块链作为一种分布式数据库技术,以链式结构存储数据块,在数字货币、智能合约、供应链管理等领域具有广泛应用。

| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链的形式连接 | 数字货币、智能合约、供应链管理等 |

机器学习技术通过算法对数据进行深度分析,能够从海量数据中提取有价值的信息,并据此做出智能决策。其应用领域广泛,包括但不限于数据挖掘、图像识别和自然语言处理等。深度学习作为机器学习的一种,通过模拟人脑神经网络结构,在图像识别、语音识别和自然语言处理等领域展现出强大的能力。人工智能技术则致力于模拟人类智能行为,广泛应用于自动驾驶、智能客服和智能家居等领域。云计算技术通过互联网提供动态易扩展的资源,适用于大数据存储、在线服务和远程协作等场景。区块链技术作为一种分布式数据库技术,以其去中心化、安全性和透明性等特点,在数字货币、智能合约和供应链管理等领域展现出巨大潜力。

| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、预测分析、图像识别 | | 深度学习 | 模仿人脑神经网络结构,通过多层神经网络进行特征提取 | 图像识别、语音识别、自然语言处理 | | 人工智能 | 模拟人类智能行为,实现智能决策和问题解决 | 自动驾驶、智能客服、智能家居 | | 大数据 | 处理和分析大量数据,从中提取有价值的信息 | 金融分析、医疗健康、交通管理 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 企业IT基础设施、在线服务、数据存储 | | 区块链 | 基于分布式账本技术,实现数据不可篡改和透明传输 | 数字货币、供应链管理、智能合约 |

机器学习技术通过算法对数据进行深度分析,能够从数据中学习并作出智能决策,广泛应用于数据挖掘、预测分析和图像识别等领域。深度学习技术模仿人脑神经网络结构,通过多层神经网络进行特征提取,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术模拟人类智能行为,实现智能决策和问题解决,被应用于自动驾驶、智能客服和智能家居等多个场景。大数据技术擅长处理和分析大量数据,从中提取有价值的信息,在金融分析、医疗健康和交通管理等领域发挥着重要作用。云计算通过互联网提供动态易扩展且经常是虚拟化的资源,适用于企业IT基础设施、在线服务和数据存储等方面。区块链技术基于分布式账本技术,实现数据不可篡改和透明传输,在数字货币、供应链管理和智能合约等领域具有广泛应用前景。

🍊 Java高并发知识点之令牌桶算法:实际应用案例

在当今互联网高速发展的时代,高并发问题已成为许多系统面临的挑战之一。特别是在Java开发领域,如何有效地处理高并发请求,保证系统的稳定性和性能,成为开发者关注的焦点。其中,令牌桶算法作为一种重要的Java高并发知识点,在实际应用中发挥着至关重要的作用。本文将结合实际案例,深入探讨令牌桶算法在限流、流量控制和资源分配等场景中的应用。

在限流场景中,令牌桶算法能够有效地控制请求的速率,防止系统过载。例如,在电商平台的高峰时段,通过令牌桶算法对用户请求进行限流,可以避免系统崩溃,确保用户购物体验。此外,在流量控制场景下,令牌桶算法同样能够发挥巨大作用。例如,在视频直播平台,通过令牌桶算法控制视频流的传输速率,可以保证视频播放的流畅性。而在资源分配场景中,令牌桶算法可以帮助系统合理分配资源,提高资源利用率。

本文将围绕以下三个方面展开详细讨论:案例一:限流场景,案例二:流量控制场景,案例三:资源分配场景。通过这三个案例,读者将了解到令牌桶算法在实际开发中的应用,并掌握其在不同场景下的实现方法。此外,本文还将对令牌桶算法的原理进行深入剖析,帮助读者更好地理解其工作原理和优势。通过学习本文,读者将能够将令牌桶算法应用于实际项目中,提高系统的并发处理能力,为用户提供更优质的服务。

| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链的形式存储 | 数字货币、智能合约、供应链管理等 |

机器学习技术通过算法对数据进行深度分析,实现从数据中学习并作出决策的能力,广泛应用于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术模拟人类智能行为,推动自动驾驶、智能客服和智能家居等领域的创新发展。云计算通过互联网提供动态易扩展的资源,支持大数据存储、在线服务和远程协作等应用。区块链技术作为一种分布式数据库,以链的形式存储数据块,在数字货币、智能合约和供应链管理等方面具有广泛应用前景。

| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、预测分析、图像识别 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息的方式 | 图像识别、语音识别、自然语言处理 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作 | | 区块链 | 一种分布式数据库技术,数据以块的形式存储 | 数字货币、智能合约、数据不可篡改 | | 大数据 | 指规模巨大、类型多样的数据集 | 数据挖掘、商业智能、科学研究 | | 物联网 | 通过互联网将各种信息传感设备与网络连接,实现智能化识别、定位、跟踪、监控和管理 | 智能家居、智能交通、智能医疗 | | 边缘计算 | 在数据产生的地方进行计算,减少数据传输 | 实时性要求高的应用、移动设备、物联网设备 |

机器学习通过算法分析数据,具备从数据中学习并做出决策的能力,广泛应用于数据挖掘、预测分析和图像识别等领域。深度学习作为机器学习的一种,采用神经网络模拟人脑处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术模拟人类智能行为,推动自动驾驶、智能客服和智能家居等领域的创新发展。云计算通过互联网提供动态易扩展的资源,适用于大数据存储、在线服务和远程协作。区块链作为一种分布式数据库技术,以其数据不可篡改的特性,在数字货币、智能合约等领域发挥重要作用。大数据技术处理规模巨大、类型多样的数据集,支持数据挖掘、商业智能和科学研究。物联网通过互联网连接信息传感设备,实现智能化识别、定位、跟踪、监控和管理,广泛应用于智能家居、智能交通和智能医疗。边缘计算在数据产生的地方进行计算,减少数据传输,适用于实时性要求高的应用、移动设备和物联网设备。

| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一个子集,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据以块的形式存储 | 数字货币、智能合约、供应链管理等 |

机器学习技术通过算法对数据进行深度分析,实现从数据中学习并作出决策的能力,广泛应用于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一个子集,通过神经网络模拟人脑处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术模拟人类智能行为,推动自动驾驶、智能客服和智能家居等领域的创新发展。云计算通过互联网提供动态易扩展的资源,支持大数据存储、在线服务和远程协作等应用。区块链技术作为一种分布式数据库,以块的形式存储数据,在数字货币、智能合约和供应链管理等方面具有广泛应用前景。

🍊 Java高并发知识点之令牌桶算法:总结

在当今的互联网时代,高并发已经成为系统性能的关键考量因素。以Java为例,在高并发场景下,合理地控制并发访问是保证系统稳定运行的关键。其中,令牌桶算法作为一种重要的流量控制机制,在Java并发编程中扮演着至关重要的角色。想象一下,在一个高流量的Web服务中,若没有有效的流量控制,系统可能会因为瞬间涌入的大量请求而崩溃。而令牌桶算法正是为了解决这一问题而设计的。它通过模拟一个桶,不断产生令牌,请求者必须先获取到令牌才能进行操作,从而实现对流量的有效控制。这一算法不仅能够防止系统过载,还能保证系统的响应速度和稳定性。接下来,我们将从总结要点和总结展望两个方面,对Java高并发知识点之令牌桶算法进行深入探讨。首先,我们将梳理令牌桶算法的核心原理和实现方法,帮助读者快速掌握其要点。随后,我们将展望令牌桶算法在未来的发展趋势,以及如何将其应用于实际项目中,以提升系统的并发处理能力。

| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息的方式 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线应用、远程协作等 | | 区块链 | 一种分布式数据库技术,数据以块的形式存储 | 数字货币、智能合约、供应链管理等 |

机器学习技术通过算法对数据进行深度分析,能够从海量数据中提取有价值的信息,并据此做出智能决策。其应用范围广泛,包括数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术旨在模拟人类智能行为,广泛应用于自动驾驶、智能客服和智能家居等领域。云计算通过互联网提供动态易扩展的资源,适用于大数据存储、在线应用和远程协作等场景。区块链技术作为一种分布式数据库,以块的形式存储数据,在数字货币、智能合约和供应链管理等方面具有广泛应用前景。

| 技术名称 | 技术特点 | 适用场景 | |--|--|--| | 机器学习 | 通过算法分析数据,从数据中学习并做出决策 | 数据挖掘、图像识别、自然语言处理等 | | 深度学习 | 机器学习的一种,使用神经网络模拟人脑处理信息 | 图像识别、语音识别、自然语言处理等 | | 人工智能 | 模拟人类智能行为的技术 | 自动驾驶、智能客服、智能家居等 | | 云计算 | 通过互联网提供动态易扩展且经常是虚拟化的资源 | 大数据存储、在线服务、远程协作等 | | 区块链 | 一种分布式数据库技术,数据块以链式结构存储 | 数字货币、智能合约、供应链管理等 |

机器学习技术通过算法对数据进行深度分析,实现从数据中学习并作出决策的能力,广泛应用于数据挖掘、图像识别和自然语言处理等领域。深度学习作为机器学习的一种,通过模拟人脑神经网络处理信息,在图像识别、语音识别和自然语言处理等方面表现出色。人工智能技术模拟人类智能行为,推动自动驾驶、智能客服和智能家居等领域的创新发展。云计算通过互联网提供动态易扩展的资源,支持大数据存储、在线服务和远程协作等应用。区块链技术以分布式数据库形式存储数据块,应用于数字货币、智能合约和供应链管理等场景。

优快云

博主分享

📥博主的人生感悟和目标

Java程序员廖志伟

📙经过多年在优快云创作上千篇文章的经验积累,我已经拥有了不错的写作技巧。同时,我还与清华大学出版社签下了四本书籍的合约,并将陆续出版。

面试备战资料

八股文备战
场景描述链接
时间充裕(25万字)Java知识点大全(高频面试题)Java知识点大全
时间紧急(15万字)Java高级开发高频面试题Java高级开发高频面试题

理论知识专题(图文并茂,字数过万)

技术栈链接
RocketMQRocketMQ详解
KafkaKafka详解
RabbitMQRabbitMQ详解
MongoDBMongoDB详解
ElasticSearchElasticSearch详解
ZookeeperZookeeper详解
RedisRedis详解
MySQLMySQL详解
JVMJVM详解

集群部署(图文并茂,字数过万)

技术栈部署架构链接
MySQL使用Docker-Compose部署MySQL一主二从半同步复制高可用MHA集群Docker-Compose部署教程
Redis三主三从集群(三种方式部署/18个节点的Redis Cluster模式)三种部署方式教程
RocketMQDLedger高可用集群(9节点)部署指南
Nacos+Nginx集群+负载均衡(9节点)Docker部署方案
Kubernetes容器编排安装最全安装教程

开源项目分享

项目名称链接地址
高并发红包雨项目https://gitee.com/java_wxid/red-packet-rain
微服务技术集成demo项目https://gitee.com/java_wxid/java_wxid

管理经验

【公司管理与研发流程优化】针对研发流程、需求管理、沟通协作、文档建设、绩效考核等问题的综合解决方案:https://download.youkuaiyun.com/download/java_wxid/91148718

希望各位读者朋友能够多多支持!

现在时代变了,信息爆炸,酒香也怕巷子深,博主真的需要大家的帮助才能在这片海洋中继续发光发热,所以,赶紧动动你的小手,点波关注❤️,点波赞👍,点波收藏⭐,甚至点波评论✍️,都是对博主最好的支持和鼓励!

🔔如果您需要转载或者搬运这篇文章的话,非常欢迎您私信我哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值