freeswitch 使用 silero-vad 静音拆分使用 fastasr 识别

文章介绍了在Python环境下,使用Silero-VAD和FastASR(Paraformer模型)进行实时语音识别的流程,包括模型下载、转换及性能测试。通过将音频从8k转换为16k,与FastASR结合,实现语音活动检测(VAD)。最终,作者展示了如何结合Silero-VAD进行数据合并和识别,并提到该系统可能适用于CPU服务器上的实时翻译和机器人应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

silero-vad 在git 的评分挺高的测试好像比webrtc vad好下面测试下

silero-vad 支持c++ 和py 由于识别c的框架少下面使用py

以下基于python3.8+torch1.12.0+torchaudio 1.12.0 

1.由于fastasr 需要16k  所以 将freeswitch的实时音频mediabug 8k转成16k 用socket传到py   模块代码百度多略 。

pip3 install fastasr

使用阿里的模型吧  感觉还行

下载预训练模型

paraformer预训练模型下载

进入FastASR/models/paraformer_cli文件夹,用于存放下载的预训练模型.

cd ../models/paraformer_cli

从modelscope官网下载预训练模型,预训练模型所在的仓库地址 也可通过命令一键下载。

wget --user-agent="Mozilla/5.0" -c "https://www.modelscope.cn/api/v1/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/repo?Revision=v1.0.4&FilePath=model.pb"

mv repo\?Revision\=v1.0.4\&FilePath\=model.pb model.pb 

将用于Python的模型转换为C++的,这样更方便通过内存映射的方式直接读取参数,加快模型读取速度。

../scripts/paraformer_convert.py model.pb

查看转换后的参数文件wenet_params.bin的md5码,md5码为c77bc27e5758ebdc28a9024460e48602,表示转换正确。

md5sum -b wenet_params.bin

测试:

git clone https://github.com/chenkui164/FastASR

 fastasr  ok

2、silero-vad安装

 需要环境 本文torch1.12.0+torchaudio 1.12.0 

  • pytorch >= 1.12.0
  • torchaudio >= 0.9.0 (used only for examples, IO and resampling, can be omitted in production)

 安装好就行

测试:

 silero-vad/parallel_example.ipynb at master · snakers4/silero-vad · GitHub

3. 综合:

fs 每帧数据10ms 用python3 合并了 vad 推荐30ms 核心代码如下:

其他代码参考

FastASR/paraformer_cli.py at main · chenkui164/FastASR · GitHub

silero-vad/parallel_example.ipynb at master · snakers4/silero-vad · GitHub

  with socket.socket(socket.AF_INET, socket.SOCK_DGRAM) as s:
        # 绑定地址和端口
        s.bind(ADDR)
        # 等待接收信息 
        datahe = []
        allokdata=[]  
        index=0;
        sendstate=0
        print("udpstart\n")
        while True:
            #print('UDP服务启动,准备接收数据……')
            # 接收数据和客户端请求地址
            data, address = s.recvfrom(BUFFSIZE) 
            if not data:
                break  
            if (len(data)) < 640: 

  。。。。。

       datahe = np.append( datahe,np.frombuffer( newdata0  , np.int16 )   );   
                    audio_float32 =   int2float(  datahe ) 
                    new_confidence = model(torch.from_numpy(audio_float32), 16000).item()
                    #print("==",new_confidence)    
                    if new_confidence >=0.5: #合并数据为识别
                        print("=================",new_confidence);  
                        if sendstate==1: 
                          allokdata = np.append( allokdata, datahe  )
                        else: 
                          sendstate=1
                          allokdata = datahe
                             
                        #f.write( datahe.tobytes()  ) 
                    else:
                        if sendstate!=0:# 一段有声音的识别
                          start_time = time.time()
                          p.reset()
                          result = p.forward(allokdata)
                          end_time = time.time()
                          print('Result: "{}".'.format(result))
                          print("Model inference takes {:.2}s.".format(end_time - start_time))
                          allokdata =[] 
                        sendstate=0;
                    datahe = []
                    index=0; 

  

最终呼叫实时测试效果如下,效果还行。:

可以在cpu服务器开启做实时翻译、机器人之类 的 。未测试并发能力。

如果需要支持到:https://shop121230895.taobao.com/index.htm

### 如何在 CUDA 10.2 上安装 PyTorch 为了确保顺利安装适用于 CUDA 10.2 的 PyTorch 版本,建议通过 Anaconda 来管理依赖关系和环境。以下是具体操作指南: #### 创建并激活新的 Conda 环境 推荐先创建一个新的 Python 环境来隔离不同项目的库文件,防止版本冲突。 ```bash conda create -n pytorch_env python=3.7 conda activate pytorch_env ``` #### 配置国内镜像源加快下载速度 考虑到网络因素可能影响包的获取效率,可设置清华大学开源软件镜像站作为默认渠道之一[^5]。 ```bash conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ conda config --set show_channel_urls yes conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/ ``` #### 安装指定版本的 PyTorch 及其相关组件 根据需求选择合适的 PyTorch 和其他必要的扩展模块版本进行安装。对于 CUDA 10.2 用户来说,可以选择如下命令完成安装过程[^2]。 ```bash conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=10.2 -c pytorch ``` #### 验证安装情况 最后一步是在 Python 解释器内部验证是否正确加载了带有 GPU 支持功能的 PyTorch 库[^4]。 ```python import torch print(torch.__version__) print(torch.cuda.is_available()) ``` 如果一切正常,则会显示相应的 PyTorch 版本号,并确认存在可用的 CUDA 设备支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值