
2023 年 4 月,Meta 公司发布了 Segment Anything Model (SAM),号称能够「分割一切」,犹如一颗重磅炸弹震荡了整个计算机视觉领域,甚至被很多人看作是颠覆传统 CV 任务的研究。
时隔 1 年多,Meta 再度发布里程碑式更新—— SAM 2 能够为静态图像和动态视频内容提供实时、可提示的对象分割,将图像与视频分割功能整合到了同一个系统中。 可想而知,强大的实力使得业界开始加速探索 SAM 在不同领域的应用,尤其是在医学图像分割领域,不少实验室和学术研究团队已经将其视为医学图像分割模型的不二之选。
所谓医学图像分割,就是将医学图像中具有特殊含义的部分分割出来,并提取相关特征,进而为临床诊断、病理学研究等提供可靠依据。
近年来,随着深度学习技术的不断进步,基于神经网络模型的分割已逐渐成为医学图像分割的主流方法,自动化的分割方法大大提升了效率与准确性。然而,鉴于医学图像分割领域的特殊性,其中仍有一些挑战亟待解决。
首先是模型泛化, 针对特定目标 (如器官或组织) 训练的模型很难适应其他目标,因此往往需要针对不同的分割目标重新开发相应的模型;其次是数据差异, 许多为计算机视觉开发的标准深度学习框架都是为 2D 图像所设计,但在医学成像中,数据通常是 3D 格式,如 CT、MRI 以及超声图像等,这种差异无疑为模型训练造成了巨大的困扰。
为了解决上述问题,牛津大学团队开发了名为 Medical SAM 2 (MedSAM-2) 的医学图像分割模型, 该模型基于 SAM 2 框架设计,将医学图像视作视频,不仅在 3D 医学图像分割任务上表现卓越,同时还解锁了一种新的单次提示分割的能力。用户只需为一种新的特定对象提供一个提示,后续图像中同类对象的分割就可以由模型自动完成,而无需进一步输入。
相关论文及成果目前以「Medical SAM 2: Segment medical images as video via Segment Anything Model 2」为题,已发表于预印本平台 arXiv 上。
研究亮点:
- 团队率先推出基于 SAM 2 的医学图像分割模型 MedSAM-2
- 团队采用了一种新颖的「medical-images-as-videos」的理念,解锁了「单次提示分割功能」

不方便下载的论文资料已打包好,还整理了一份研究生及SCI论文攻略包

最低0.47元/天 解锁文章
500

被折叠的 条评论
为什么被折叠?



