MapReduce的大体流程是这样的,如图所示:
由图片可以看到mapreduce执行下来主要包含这样几个步骤
1.首先对输入数据源进行切片
2.master调度worker执行map任务
3.worker读取输入源片段
4.worker执行map任务,将任务输出保存在本地
5.master调度worker执行reduce任务,reduce worker读取map任务的输出文件
6.执行reduce任务,将任务输出保存到HDFS
若对流程细节进行深究,可以得到这样一张流程图
角色描述:
JobClient:执行任务的客户端
JobTracker:任务调度器
TaskTracker:任务跟踪器
Task:具体的任务(Map OR Reduce)
从生命周期的角度来看,mapreduce流程大概经历这样几个阶段:初始化、分配、执行、反馈、成功与失败的后续处理
切片信息由InputSplit对象封装,接口定义如下:

由图片可以看到mapreduce执行下来主要包含这样几个步骤
1.首先对输入数据源进行切片
2.master调度worker执行map任务
3.worker读取输入源片段
4.worker执行map任务,将任务输出保存在本地
5.master调度worker执行reduce任务,reduce worker读取map任务的输出文件
6.执行reduce任务,将任务输出保存到HDFS
若对流程细节进行深究,可以得到这样一张流程图

角色描述:
JobClient:执行任务的客户端
JobTracker:任务调度器
TaskTracker:任务跟踪器
Task:具体的任务(Map OR Reduce)
从生命周期的角度来看,mapreduce流程大概经历这样几个阶段:初始化、分配、执行、反馈、成功与失败的后续处理
每个阶段所做的事情大致如下
任务初始化
1.JobClient对数据源进行切片切片信息由InputSplit对象封装,接口定义如下:
public interface InputSplit extends