二、编写word count示例代码来初步认识flink及了解 批与流 处理的区别

引入依赖 

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>1.10.1</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.12</artifactId>
            <version>1.10.1</version>
        </dependency>

批处理代码(未知原因暂时数据没有打印 后续知道了来补充)

package com.robert.flink.wcTest;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;

public class FlinkBatchWordCountPrintTest {

    public static void main(String[] args) throws Exception {

        //get runtime environment
        ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

        //path of file for test
        String filePath = "D:\\word.txt";

        //read content into dataset from file
        DataSet<String> stringDataSet = env.readTextFile(filePath);

        DataSet<Tuple2<String, Integer>> sum = stringDataSet.flatMap(new FlatMapFunction<String, Tuple2<String,Integer>>() {

            @Override
            public void flatMap(String value, Collector<Tuple2<String, Integer>> collector) {
                String[] words = value.split("");
                for (String word : words) {
                    collector.collect(new Tuple2<>(word, 1));
                }
            }
        }).groupBy(0).sum(1);



        //print content of dataset
        sum.print();

    }

}





 流处理代码(未知原因暂时数据没有打印 后续知道了来补充)

package com.robert.flink.wcTest;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.AggregateOperator;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.operators.FlatMapOperator;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

public class FlinStreamWordCountPrintTest {

    public static void main(String[] args) throws Exception {

        //get runtime environment
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        //path of file for test
        String filePath = "C:\\study\\咕泡\\mybatis\\06.MyBatis原理篇\\01.MyBatis应用分析与最佳实践\\课堂源码\\MyBatis第一天代码\\flink\\src\\main\\resources\\static\\word.txt";

        //read content into dataset from file
        DataStream<String> stringDataSet = env.readTextFile(filePath);


        //count word appeared times
        DataStream<Tuple2<String, Integer>> sum = stringDataSet.flatMap((FlatMapFunction<String, Tuple2<String, Integer>>) (value, collector) -> {

            String[] words = value.split(" ");
            for (String word : words) {
                collector.collect(new Tuple2<>(word, 1));
            }
        }).returns(Types.TUPLE(Types.STRING, Types.INT)).keyBy(0).sum(1);

        //print content of dataset
        sum.print();

        env.execute();

    }

}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我才是真的封不觉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值