文章目录
反射
什么是反射?
反射就是Reflection,Java的反射是指程序在运行期可以拿到一个对象的所有信息。
正常情况下,如果我们要调用一个对象的方法,或者访问一个对象的字段,通常会传入对象实例:
// Main.java
import com.itranswarp.learnjava.Person;
public class Main {
String getFullName(Person p) {
return p.getFirstName() + " " + p.getLastName();
}
}
但是,如果不能获得Person类,只有一个Object实例,比如这样:
String getFullName(Object obj) {
return ???
}
怎么办?有童鞋会说:强制转型啊!
String getFullName(Object obj) {
Person p = (Person) obj;
return p.getFirstName() + " " + p.getLastName();
}
强制转型的时候,你会发现一个问题:编译上面的代码,仍然需要引用Person类。不然,去掉import语句,你看能不能编译通过?
所以,反射是为了解决在运行期,对某个实例一无所知的情况下,如何调用其方法。
Class类
除了int等基本类型外,Java的其他类型全部都是class(包括interface)。例如:
StringObjectRunnableException- …
仔细思考,我们可以得出结论:class(包括interface)的本质是数据类型(Type)。无继承关系的数据类型无法赋值:
Number n = new Double(123.456); // OK
String s = new Double(123.456); // compile error!
而class是由JVM在执行过程中动态加载的。JVM在第一次读取到一种class类型时,将其加载进内存。
每加载一种class,JVM就为其创建一个Class类型的实例,并关联起来。注意:这里的Class类型是一个名叫Class的class。它长这样:
public final class Class {
private Class() {}
}
以String类为例,当JVM加载String类时,它首先读取String.class文件到内存,然后,为String类创建一个Class实例并关联起来:
Class cls = new Class(String);
这个Class实例是JVM内部创建的,如果我们查看JDK源码,可以发现Class类的构造方法是private,只有JVM能创建Class实例,我们自己的Java程序是无法创建Class实例的。
所以,JVM持有的每个Class实例都指向一个数据类型(class或interface):
┌───────────────────────────┐
│ Class Instance │──────> String
├───────────────────────────┤
│name = "java.lang.String" │
└───────────────────────────┘
┌───────────────────────────┐
│ Class Instance │──────> Random
├───────────────────────────┤
│name = "java.util.Random" │
└───────────────────────────┘
┌───────────────────────────┐
│ Class Instance │──────> Runnable
├───────────────────────────┤
│name = "java.lang.Runnable"│
└───────────────────────────┘
一个Class实例包含了该class的所有完整信息:
┌───────────────────────────┐
│ Class Instance │──────> String
├───────────────────────────┤
│name = "java.lang.String" │
├───────────────────────────┤
│package = "java.lang" │
├───────────────────────────┤
│super = "java.lang.Object" │
├───────────────────────────┤
│interface = CharSequence...│
├───────────────────────────┤
│field = value[],hash,... │
├───────────────────────────┤
│method = indexOf()... │
└───────────────────────────┘
由于JVM为每个加载的class创建了对应的Class实例,并在实例中保存了该class的所有信息,包括类名、包名、父类、实现的接口、所有方法、字段等,因此,如果获取了某个Class实例,我们就可以通过这个Class实例获取到该实例对应的class的所有信息。
这种通过Class实例获取class信息的方法称为反射(Reflection)。
如何获取一个class的Class实例?有三个方法:
方法一:直接通过一个class的静态变量class获取:
Class cls = String.class;
方法二:如果我们有一个实例变量,可以通过该实例变量提供的getClass()方法获取:
String s = "Hello";Class cls = s.getClass();
方法三:如果知道一个class的完整类名,可以通过静态方法Class.forName()获取:
Class cls = Class.forName("java.lang.String");
因为Class实例在JVM中是唯一的,所以,上述方法获取的Class实例是同一个实例。可以用==比较两个Class实例:
Class cls1 = String.class;
String s = "Hello";
Class cls2 = s.getClass();
boolean sameClass = cls1 == cls2; // true
注意一下Class实例比较和instanceof的差别:
Integer n = new Integer(123);
boolean b1 = n instanceof Integer; // true,因为n是Integer类型
boolean b2 = n instanceof Number; // true,因为n是Number类型的子类
boolean b3 = n.getClass() == Integer.class; // true,因为n.getClass()返回Integer.class
boolean b4 = n.getClass() == Number.class; // false,因为Integer.class!=Number.class
用instanceof不但匹配指定类型,还匹配指定类型的子类。而用==判断class实例可以精确地判断数据类型,但不能作子类型比较。
通常情况下,我们应该用instanceof判断数据类型,因为面向抽象编程的时候,我们不关心具体的子类型。只有在需要精确判断一个类型是不是某个class的时候,我们才使用==判断class实例。
因为反射的目的是为了获得某个实例的信息。因此,当我们拿到某个Object实例时,我们可以通过反射获取该Object的class信息:
void printObjectInfo(Object obj) {
Class cls = obj.getClass();
}
要从Class实例获取获取的基本信息,参考下面的代码:
public class Main {
public static void main(String[] args) {
printClassInfo("".getClass());
printClassInfo(Runnable.class);
printClassInfo(java.time.Month.class);
printClassInfo(String[].class);
printClassInfo(int.class);
}
static void printClassInfo(Class cls) {
System.out.println("Class name: " + cls.getName());
System.out.println("Simple name: " + cls.getSimpleName());
if (cls.getPackage() != null) {
System.out.println("Package name: " + cls.getPackage().getName());
}
System.out.println("is interface: " + cls.isInterface());
System.out.println("is enum: " + cls.isEnum());
System.out.println("is array: " + cls.isArray());
System.out.println("is primitive: " + cls.isPrimitive());
}
}
注意到数组(例如String[])也是一种Class,而且不同于String.class,它的类名是[Ljava.lang.String。此外,JVM为每一种基本类型如int也创建了Class,通过int.class访问。
如果获取到了一个Class实例,我们就可以通过该Class实例来创建对应类型的实例:
// 获取String的Class实例:
Class cls = String.class;
// 创建一个String实例:
String s = (String) cls.newInstance();
上述代码相当于new String()。通过Class.newInstance()可以创建类实例,它的局限是:只能调用public的无参数构造方法。带参数的构造方法,或者非public的构造方法都无法通过Class.newInstance()被调用。
动态加载
JVM在执行Java程序的时候,并不是一次性把所有用到的class全部加载到内存,而是第一次需要用到class时才加载。例如:
// Main.java
public class Main {
public static void main(String[] args) {
if (args.length > 0) {
create(args[0]);
}
}
static void create(String name) {
Person p = new Person(name);
}
}
当执行Main.java时,由于用到了Main,因此,JVM首先会把Main.class加载到内存。然而,并不会加载Person.class,除非程序执行到create()方法,JVM发现需要加载Person类时,才会首次加载Person.class。如果没有执行create()方法,那么Person.class根本就不会被加载。
这就是JVM动态加载class的特性。
动态加载class的特性对于Java程序非常重要。利用JVM动态加载class的特性,我们才能在运行期根据条件加载不同的实现类。例如,Commons Logging总是优先使用Log4j,只有当Log4j不存在时,才使用JDK的logging。利用JVM动态加载特性,大致的实现代码如下:
// Commons Logging优先使用Log4j:
LogFactory factory = null;
if (isClassPresent("org.apache.logging.log4j.Logger")) {
factory = createLog4j();
} else {
factory = createJdkLog();
}
boolean isClassPresent(String name) {
try {
Class.forName(name);
return true;
} catch (Exception e) {
return false;
}
}
这就是为什么我们只需要把Log4j的jar包放到classpath中,Commons Logging就会自动使用Log4j的原因。
小结
JVM为每个加载的class及interface创建了对应的Class实例来保存class及interface的所有信息;
获取一个class对应的Class实例后,就可以获取该class的所有信息;
通过Class实例获取class信息的方法称为反射(Reflection);
JVM总是动态加载class,可以在运行期根据条件来控制加载class。
访问字段
对任意的一个Object实例,只要我们获取了它的Class,就可以获取它的一切信息。
我们先看看如何通过Class实例获取字段信息。Class类提供了以下几个方法来获取字段:
- Field getField(name):根据字段名获取某个public的field(包括父类)
- Field getDeclaredField(name):根据字段名获取当前类的某个field(不包括父类)
- Field[] getFields():获取所有public的field(包括父类)
- Field[] getDeclaredFields():获取当前类的所有field(不包括父类)
我们来看一下示例代码:
public class Main {
public static void main(String[] args) throws Exception {
Class stdClass = Student.class;
// 获取public字段"score":
System.out.println(stdClass.getField("score"));
// 获取继承的public字段"name":
System.out.println(stdClass.getField("name"));
// 获取private字段"grade":
System.out.println(stdClass.getDeclaredField("grade"));
}
}
class Student extends Person {
public int score;
private int grade;
}
class Person {
public String name;
}
上述代码首先获取Student的Class实例,然后,分别获取public字段、继承的public字段以及private字段,打印出的Field类似:
public int Student.score
public java.lang.String Person.name
private int Student.grade
一个Field对象包含了一个字段的所有信息:
getName():返回字段名称,例如,"name";getType():返回字段类型,也是一个Class实例,例如,String.class;getModifiers():返回字段的修饰符,它是一个int,不同的bit表示不同的含义。
以String类的value字段为例,它的定义是:
public final class String {
private final byte[] value;
}
我们用反射获取该字段的信息,代码如下:
Field f = String.class.getDeclaredField("value");
f.getName(); // "value"
f.getType(); // class [B 表示byte[]类型
int m = f.getModifiers();
Modifier.isFinal(m); // true
Modifier.isPublic(m); // false
Modifier.isProtected(m); // false
Modifier.isPrivate(m); // true
Modifier.isStatic(m); // false
获取字段值
利用反射拿到字段的一个Field实例只是第一步,我们还可以拿到一个实例对应的该字段的值。
例如,对于一个Person实例,我们可以先拿到name字段对应的Field,再获取这个实例的name字段的值:
// reflection
import java.lang.reflect.Field;
public class Main {
public static void main(String[] args) throws Exception {
Object p = new Person("Xiao Ming");
Class c = p.getClass();
Field f = c.getDeclaredField("name");
Object value = f.get(p);
System.out.println(value); // "Xiao Ming"
}
}
class Person {
private String name;
public Person(String name) {
this.name = name;
}
}
上述代码先获取Class实例,再获取Field实例,然后,用Field.get(Object)获取指定实例的指定字段的值。
运行代码,如果不出意外,会得到一个IllegalAccessException,这是因为name被定义为一个private字段,正常情况下,Main类无法访问Person类的private字段。要修复错误,可以将private改为public,或者,在调用Object value = f.get(p);前,先写一句:
f.setAccessible(true);
调用Field.setAccessible(true)的意思是,别管这个字段是不是public,一律允许访问。
可以试着加上上述语句,再运行代码,就可以打印出private字段的值。
有童鞋会问:如果使用反射可以获取private字段的值,那么类的封装还有什么意义?
答案是正常情况下,我们总是通过p.name来访问Person的name字段,编译器会根据public、protected和private决定是否允许访问字段,这样就达到了数据封装的目的。
而反射是一种非常规的用法,使用反射,首先代码非常繁琐,其次,它更多地是给工具或者底层框架来使用,目的是在不知道目标实例任何信息的情况下,获取特定字段的值。
此外,setAccessible(true)可能会失败。如果JVM运行期存在SecurityManager,那么它会根据规则进行检查,有可能阻止setAccessible(true)。例如,某个SecurityManager可能不允许对java和javax开头的package的类调用setAccessible(true),这样可以保证JVM核心库的安全。
设置字段值
通过Field实例既然可以获取到指定实例的字段值,自然也可以设置字段的值。
设置字段值是通过Field.set(Object, Object)实现的,其中第一个Object参数是指定的实例,第二个Object参数是待修改的值。示例代码如下:
// reflection
import java.lang.reflect.Field;
public class Main {
public static void main(String[] args) throws Exception {
Person p = new Person("Xiao Ming");
System.out.println(p.getName()); // "Xiao Ming"
Class c = p.getClass();
Field f = c.getDeclaredField("name");
f.setAccessible(true);
f.set(p, "Xiao Hong");
System.out.println(p.getName()); // "Xiao Hong"
}
}
class Person {
private String name;
public Person(String name) {
this.name = name;
}
public String getName() {
return this.name;
}
}
运行上述代码,打印的name字段从Xiao Ming变成了Xiao Hong,说明通过反射可以直接修改字段的值。
同样的,修改非public字段,需要首先调用setAccessible(true)。
小结
Java的反射API提供的Field类封装了字段的所有信息:
通过Class实例的方法可以获取Field实例:getField(),getFields(),getDeclaredField(),getDeclaredFields();
通过Field实例可以获取字段信息:getName(),getType(),getModifiers();
通过Field实例可以读取或设置某个对象的字段,如果存在访问限制,要首先调用setAccessible(true)来访问非public字段。
通过反射读写字段是一种非常规方法,它会破坏对象的封装。
调用方法
我们已经能通过Class实例获取所有Field对象,同样的,可以通过Class实例获取所有Method信息。Class类提供了以下几个方法来获取Method:
Method getMethod(name, Class...):获取某个public的Method(包括父类)Method getDeclaredMethod(name, Class...):获取当前类的某个Method(不包括父类)Method[] getMethods():获取所有public的Method(包括父类)Method[] getDeclaredMethods():获取当前类的所有Method(不包括父类)
我们来看一下示例代码:
//reflection
public class Main {
public static void main(String[] args) throws Exception {
Class stdClass = Student.class;
// 获取public方法getScore,参数为String:
System.out.println(stdClass.getMethod("getScore", String.class));
// 获取继承的public方法getName,无参数:
System.out.println(stdClass.getMethod("getName"));
// 获取private方法getGrade,参数为int:
System.out.println(stdClass.getDeclaredMethod("getGrade", int.class));
}
}
class Student extends Person {
public int getScore(String type) {
return 99;
}
private int getGrade(int year) {
return 1;
}
}
class Person {
public String getName() {
return "Person";
}
}
上述代码首先获取Student的Class实例,然后,分别获取public方法、继承的public方法以及private方法,打印出的Method类似:
public int Student.getScore(java.lang.String)
public java.lang.String Person.getName()
private int Student.getGrade(int)
一个Method对象包含一个方法的所有信息:
getName():返回方法名称,例如:"getScore";getReturnType():返回方法返回值类型,也是一个Class实例,例如:String.class;getParameterTypes():返回方法的参数类型,是一个Class数组,例如:{String.class, int.class};getModifiers():返回方法的修饰符,它是一个int,不同的bit表示不同的含义。
调用方法
当我们获取到一个Method对象时,就可以对它进行调用。我们以下面的代码为例:
String s = "Hello world";String r = s.substring(6); // "world"
如果用反射来调用substring方法,需要以下代码:
// reflection
import java.lang.reflect.Method;
public class Main {
public static void main(String[] args) throws Exception {
// String对象:
String s = "Hello world";
// 获取String substring(int)方法,参数为int:
Method m = String.class.getMethod("substring", int.class);
// 在s对象上调用该方法并获取结果:
String r = (String) m.invoke(s, 6);
// 打印调用结果:
System.out.println(r);
}
}
注意到substring()有两个重载方法,我们获取的是String substring(int)这个方法。思考一下如何获取String substring(int, int)方法。
对Method实例调用invoke就相当于调用该方法,invoke的第一个参数是对象实例,即在哪个实例上调用该方法,后面的可变参数要与方法参数一致,否则将报错。
调用静态方法
如果获取到的Method表示一个静态方法,调用静态方法时,由于无需指定实例对象,所以invoke方法传入的第一个参数永远为null。我们以Integer.parseInt(String)为例:
// reflection
import java.lang.reflect.Method;
public class Main {
public static void main(String[] args) throws Exception {
// 获取Integer.parseInt(String)方法,参数为String:
Method m = Integer.class.getMethod("parseInt", String.class);
// 调用该静态方法并获取结果:
Integer n = (Integer) m.invoke(null, "12345");
// 打印调用结果:
System.out.println(n);
}
}
调用非public方法
和Field类似,对于非public方法,我们虽然可以通过Class.getDeclaredMethod()获取该方法实例,但直接对其调用将得到一个IllegalAccessException。为了调用非public方法,我们通过Method.setAccessible(true)允许其调用:
// reflection
import java.lang.reflect.Method;
public class Main {
public static void main(String[] args) throws Exception {
Person p = new Person();
Method m = p.getClass().getDeclaredMethod("setName", String.class);
m.setAccessible(true);
m.invoke(p, "Bob");
System.out.println(p.name);
}
}
class Person {
String name;
private void setName(String name) {
this.name = name;
}
}
此外,setAccessible(true)可能会失败。如果JVM运行期存在SecurityManager,那么它会根据规则进行检查,有可能阻止setAccessible(true)。例如,某个SecurityManager可能不允许对java和javax开头的package的类调用setAccessible(true),这样可以保证JVM核心库的安全。
多态
我们来考察这样一种情况:一个Person类定义了hello()方法,并且它的子类Student也覆写了hello()方法,那么,从Person.class获取的Method,作用于Student实例时,调用的方法到底是哪个?
// reflection
import java.lang.reflect.Method;
public class Main {
public static void main(String[] args) throws Exception {
// 获取Person的hello方法:
Method h = Person.class.getMethod("hello");
// 对Student实例调用hello方法:
h.invoke(new Student());
}
}
class Person {
public void hello() {
System.out.println("Person:hello");
}
}
class Student extends Person {
public void hello() {
System.out.println("Student:hello");
}
}
运行上述代码,发现打印出的是Student:hello,因此,使用反射调用方法时,仍然遵循多态原则:即总是调用实际类型的覆写方法(如果存在)。上述的反射代码:
Method m = Person.class.getMethod("hello");
m.invoke(new Student());
实际上相当于:
Person p = new Student();
p.hello();
小结
Java的反射API提供的Method对象封装了方法的所有信息:
通过Class实例的方法可以获取Method实例:getMethod(),getMethods(),getDeclaredMethod(),getDeclaredMethods();
通过Method实例可以获取方法信息:getName(),getReturnType(),getParameterTypes(),getModifiers();
通过Method实例可以调用某个对象的方法:Object invoke(Object instance, Object... parameters);
通过设置setAccessible(true)来访问非public方法;
通过反射调用方法时,仍然遵循多态原则。
调用构造方法
我们通常使用new操作符创建新的实例:
Person p = new Person();
如果通过反射来创建新的实例,可以调用Class提供的newInstance()方法:
Person p = Person.class.newInstance();
调用Class.newInstance()的局限是,它只能调用该类的public无参数构造方法。如果构造方法带有参数,或者不是public,就无法直接通过Class.newInstance()来调用。
为了调用任意的构造方法,Java的反射API提供了Constructor对象,它包含一个构造方法的所有信息,可以创建一个实例。Constructor对象和Method非常类似,不同之处仅在于它是一个构造方法,并且,调用结果总是返回实例:
import java.lang.reflect.Constructor;
public class Main {
public static void main(String[] args) throws Exception {
// 获取构造方法Integer(int):
Constructor cons1 = Integer.class.getConstructor(int.class);
// 调用构造方法:
Integer n1 = (Integer) cons1.newInstance(123);
System.out.println(n1);
// 获取构造方法Integer(String)
Constructor cons2 = Integer.class.getConstructor(String.class);
Integer n2 = (Integer) cons2.newInstance("456");
System.out.println(n2);
}
}
通过Class实例获取Constructor的方法如下:
getConstructor(Class...):获取某个public的Constructor;getDeclaredConstructor(Class...):获取某个Constructor;getConstructors():获取所有public的Constructor;getDeclaredConstructors():获取所有Constructor。
注意Constructor总是当前类定义的构造方法,和父类无关,因此不存在多态的问题。
调用非public的Constructor时,必须首先通过setAccessible(true)设置允许访问。setAccessible(true)可能会失败。
小结
Constructor对象封装了构造方法的所有信息;
通过Class实例的方法可以获取Constructor实例:getConstructor(),getConstructors(),getDeclaredConstructor(),getDeclaredConstructors();
通过Constructor实例可以创建一个实例对象:newInstance(Object... parameters); 通过设置setAccessible(true)来访问非public构造方法。
获取继承关系
当我们获取到某个Class对象时,实际上就获取到了一个类的类型:
Class cls = String.class; // 获取到String的Class
还可以用实例的getClass()方法获取:
String s = "";Class cls = s.getClass(); // s是String,因此获取到String的Class
最后一种获取Class的方法是通过Class.forName(""),传入Class的完整类名获取:
Class s = Class.forName("java.lang.String");
这三种方式获取的Class实例都是同一个实例,因为JVM对每个加载的Class只创建一个Class实例来表示它的类型。
获取父类的Class
有了Class实例,我们还可以获取它的父类的Class:
//reflection
public class Main {
public static void main(String[] args) throws Exception {
Class i = Integer.class;
Class n = i.getSuperclass();
System.out.println(n);
Class o = n.getSuperclass();
System.out.println(o);
System.out.println(o.getSuperclass());
}
}
运行上述代码,可以看到,Integer的父类类型是Number,Number的父类是Object,Object的父类是null。除Object外,其他任何非interface的Class都必定存在一个父类类型。
获取interface
由于一个类可能实现一个或多个接口,通过Class我们就可以查询到实现的接口类型。例如,查询Integer实现的接口:
// reflection
import java.lang.reflect.Method;
public class Main {
public static void main(String[] args) throws Exception {
Class s = Integer.class;
Class[] is = s.getInterfaces();
for (Class i : is) {
System.out.println(i);
}
}
}
运行上述代码可知,Integer实现的接口有:
- java.lang.Comparable
- java.lang.constant.Constable
- java.lang.constant.ConstantDesc
要特别注意:getInterfaces()只返回当前类直接实现的接口类型,并不包括其父类实现的接口类型:
// reflection
import java.lang.reflect.Method;
public class Main {
public static void main(String[] args) throws Exception {
Class s = Integer.class.getSuperclass();
Class[] is = s.getInterfaces();
for (Class i : is) {
System.out.println(i);
}
}
}
此外,对所有interface的Class调用getSuperclass()返回的是null,获取接口的父接口要用getInterfaces():
System.out.println(java.io.DataInputStream.class.getSuperclass()); // java.io.FilterInputStream,因为DataInputStream继承自FilterInputStream
System.out.println(java.io.Closeable.class.getSuperclass()); // null,对接口调用getSuperclass()总是返回null,获取接口的父接口要用getInterfaces()
如果一个类没有实现任何interface,那么getInterfaces()返回空数组。
继承关系
当我们判断一个实例是否是某个类型时,正常情况下,使用instanceof操作符:
Object n = Integer.valueOf(123);
boolean isDouble = n instanceof Double; // false
boolean isInteger = n instanceof Integer; // true
boolean isNumber = n instanceof Number; // true
boolean isSerializable = n instanceof java.io.Serializable; // true
如果是两个Class实例,要判断一个向上转型是否成立,可以调用isAssignableFrom():
// Integer i = ?
Integer.class.isAssignableFrom(Integer.class); // true,因为Integer可以赋值给Integer
// Number n = ?
Number.class.isAssignableFrom(Integer.class); // true,因为Integer可以赋值给Number
// Object o = ?
Object.class.isAssignableFrom(Integer.class); // true,因为Integer可以赋值给Object
// Integer i = ?
Integer.class.isAssignableFrom(Number.class); // false,因为Number不能赋值给Integer
小结
通过Class对象可以获取继承关系:
Class getSuperclass():获取父类类型;Class[] getInterfaces():获取当前类实现的所有接口。
通过Class对象的isAssignableFrom()方法可以判断一个向上转型是否可以实现。
动态代理
我们来比较Java的class和interface的区别:
- 可以实例化
class(非abstract); - 不能实例化
interface。
所有interface类型的变量总是通过向上转型并指向某个实例的:
CharSequence cs = new StringBuilder();
有没有可能不编写实现类,直接在运行期创建某个interface的实例呢?
这是可能的,因为Java标准库提供了一种动态代理(Dynamic Proxy)的机制:可以在运行期动态创建某个interface的实例。
什么叫运行期动态创建?听起来好像很复杂。所谓动态代理,是和静态相对应的。我们来看静态代码怎么写:
定义接口:
public interface Hello {
void morning(String name);
}
编写实现类:
public class HelloWorld implements Hello {
public void morning(String name) {
System.out.println("Good morning, " + name);
}
}
创建实例,转型为接口并调用:
Hello hello = new HelloWorld();
hello.morning("Bob");
这种方式就是我们通常编写代码的方式。
还有一种方式是动态代码,我们仍然先定义了接口Hello,但是我们并不去编写实现类,而是直接通过JDK提供的一个Proxy.newProxyInstance()创建了一个Hello接口对象。这种没有实现类但是在运行期动态创建了一个接口对象的方式,我们称为动态代码。JDK提供的动态创建接口对象的方式,就叫动态代理。
一个最简单的动态代理实现如下:
public class Main {
public static void main(String[] args) {这种方式就是我们通常编写代码的方式。
//还有一种方式是动态代码,我们仍然先定义了接口Hello,但是我们并不去编写实现类,而是直接通过JDK提供的一个Proxy.newProxyInstance()创建了一个Hello接口对象。这种没有实现类但是在运行期动态创建了一个接口对象的方式,我们称为动态代码。JDK提供的动态创建接口对象的方式,就叫动态代理。
//一个最简单的动态代理实现如下:
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
InvocationHandler handler = new InvocationHandler() {
@Override
public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
System.out.println(method);
if (method.getName().equals("morning")) {
System.out.println("Good morning, " + args[0]);
}
return null;
}
};
Hello hello = (Hello) Proxy.newProxyInstance(
Hello.class.getClassLoader(), // 传入ClassLoader
new Class[] { Hello.class }, // 传入要实现的接口
handler); // 传入处理调用方法的InvocationHandler
hello.morning("Bob");
}
}
interface Hello {
void morning(String name);
}
在运行期动态创建一个interface实例的方法如下:
- 定义一个
InvocationHandler实例,它负责实现接口的方法调用; - 通过Proxy.newProxyInstance()创建interface
- 使用的
ClassLoader,通常就是接口类的ClassLoader; - 需要实现的接口数组,至少需要传入一个接口进去;
- 用来处理接口方法调用的
InvocationHandler实例。
- 使用的
- 将返回的
Object强制转型为接口。
动态代理实际上是JVM在运行期动态创建class字节码并加载的过程,它并没有什么黑魔法,把上面的动态代理改写为静态实现类大概长这样:
public class HelloDynamicProxy implements Hello {
InvocationHandler handler;
public HelloDynamicProxy(InvocationHandler handler) {
this.handler = handler;
}
public void morning(String name) {
handler.invoke(
this,
Hello.class.getMethod("morning", String.class),
new Object[] { name });
}
}
其实就是JVM帮我们自动编写了一个上述类(不需要源码,可以直接生成字节码),并不存在可以直接实例化接口的黑魔法。
小结
Java标准库提供了动态代理功能,允许在运行期动态创建一个接口的实例;
动态代理是通过Proxy创建代理对象,然后将接口方法“代理”给InvocationHandler完成的。
注解
Java程序的一种特殊“注释”——注解(Annotation)。
使用注解
什么是注解(Annotation)?注解是放在Java源码的类、方法、字段、参数前的一种特殊“注释”:
// this is a component:
@Resource("hello")
public class Hello {
@Inject
int n;
@PostConstruct
public void hello(@Param String name) {
System.out.println(name);
}
@Override
public String toString() {
return "Hello";
}
}
注释会被编译器直接忽略,注解则可以被编译器打包进入class文件,因此,注解是一种用作标注的“元数据”。
注解的作用
从JVM的角度看,注解本身对代码逻辑没有任何影响,如何使用注解完全由工具决定。
Java的注解可以分为三类:
第一类是由编译器使用的注解,例如:
@Override:让编译器检查该方法是否正确地实现了覆写;@SuppressWarnings:告诉编译器忽略此处代码产生的警告。
这类注解不会被编译进入.class文件,它们在编译后就被编译器扔掉了。
第二类是由工具处理.class文件使用的注解,比如有些工具会在加载class的时候,对class做动态修改,实现一些特殊的功能。这类注解会被编译进入.class文件,但加载结束后并不会存在于内存中。这类注解只被一些底层库使用,一般我们不必自己处理。
第三类是在程序运行期能够读取的注解,它们在加载后一直存在于JVM中,这也是最常用的注解。例如,一个配置了@PostConstruct的方法会在调用构造方法后自动被调用(这是Java代码读取该注解实现的功能,JVM并不会识别该注解)。
定义一个注解时,还可以定义配置参数。配置参数可以包括:
- 所有基本类型;
- String;
- 枚举类型;
- 基本类型、String、Class以及枚举的数组。
因为配置参数必须是常量,所以,上述限制保证了注解在定义时就已经确定了每个参数的值。
注解的配置参数可以有默认值,缺少某个配置参数时将使用默认值。
此外,大部分注解会有一个名为value的配置参数,对此参数赋值,可以只写常量,相当于省略了value参数。
如果只写注解,相当于全部使用默认值。
举个栗子,对以下代码:
public class Hello {
@Check(min=0, max=100, value=55)
public int n;
@Check(value=99)
public int p;
@Check(99) // @Check(value=99)
public int x;
@Check
public int y;
}
@Check就是一个注解。第一个@Check(min=0, max=100, value=55)明确定义了三个参数,第二个@Check(value=99)只定义了一个value参数,它实际上和@Check(99)是完全一样的。最后一个@Check表示所有参数都使用默认值。
小结
注解(Annotation)是Java语言用于工具处理的标注:
注解可以配置参数,没有指定配置的参数使用默认值;
如果参数名称是value,且只有一个参数,那么可以省略参数名称。
定义注解
Java语言使用@interface语法来定义注解(Annotation),它的格式如下:
public @interface Report {
int type() default 0;
String level() default "info";
String value() default "";
}
注解的参数类似无参数方法,可以用default设定一个默认值(强烈推荐)。最常用的参数应当命名为value。
元注解
有一些注解可以修饰其他注解,这些注解就称为元注解(meta annotation)。Java标准库已经定义了一些元注解,我们只需要使用元注解,通常不需要自己去编写元注解。
@Target
最常用的元注解是@Target。使用@Target可以定义Annotation能够被应用于源码的哪些位置:
- 类或接口:
ElementType.TYPE; - 字段:
ElementType.FIELD; - 方法:
ElementType.METHOD; - 构造方法:
ElementType.CONSTRUCTOR; - 方法参数:
ElementType.PARAMETER。
例如,定义注解@Report可用在方法上,我们必须添加一个@Target(ElementType.METHOD):
@Target(ElementType.METHOD)
public @interface Report {
int type() default 0;
String level() default "info";
String value() default "";
}
定义注解@Report可用在方法或字段上,可以把@Target注解参数变为数组{ ElementType.METHOD, ElementType.FIELD }:
@Target({
ElementType.METHOD,
ElementType.FIELD
})
public @interface Report {
...
}
实际上@Target定义的value是ElementType[]数组,只有一个元素时,可以省略数组的写法。
- ;
- 运行期:
RetentionPolicy.RUNTIME。
如果@Retention不存在,则该Annotation默认为CLASS。因为通常我们自定义的Annotation都是RUNTIME,所以,务必要加上@Retention(RetentionPolicy.RUNTIME)这个元注解:
@Retention(RetentionPolicy.RUNTIME)
public @interface Report {
int type() default 0;
String level() default "info";
String value() default "";
}
@Repeatable
使用@Repeatable这个元注解可以定义Annotation是否可重复。这个注解应用不是特别广泛。
@Repeatable(Reports.class)
@Target(ElementType.TYPE)
public @interface Report {
int type() default 0;
String level() default "info";
String value() default "";
}
@Target(ElementType.TYPE)
public @interface Reports {
Report[] value();
}
经过@Repeatable修饰后,在某个类型声明处,就可以添加多个@Report注解:
@Report(type=1, level="debug")
@Report(type=2, level="warning")
public class Hello {
}
@Inherited
使用@Inherited定义子类是否可继承父类定义的Annotation。@Inherited仅针对@Target(ElementType.TYPE)类型的annotation有效,并且仅针对class的继承,对interface的继承无效:
@Inherited
@Target(ElementType.TYPE)
public @interface Report {
int type() default 0;
String level() default "info";
String value() default "";
}
在使用的时候,如果一个类用到了@Report:
@Report(type=1)public class Person {}
则它的子类默认也定义了该注解:
public class Student extends Person {}
如何定义Annotation
我们总结一下定义Annotation的步骤:
第一步,用@interface定义注解:
public @interface Report {}
第二步,添加参数、默认值:
public @interface Report {
int type() default 0;
String level() default "info";
String value() default "";
}
把最常用的参数定义为value(),推荐所有参数都尽量设置默认值。
第三步,用元注解配置注解:
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface Report {
int type() default 0;
String level() default "info";
String value() default "";
}
其中,必须设置@Target和@Retention,@Retention一般设置为RUNTIME,因为我们自定义的注解通常要求在运行期读取。一般情况下,不必写@Inherited和@Repeatable。
小结
Java使用@interface定义注解:
可定义多个参数和默认值,核心参数使用value名称;
必须设置@Target来指定Annotation可以应用的范围;
应当设置@Retention(RetentionPolicy.RUNTIME)便于运行期读取该Annotation。
处理注解
Java的注解本身对代码逻辑没有任何影响。根据@Retention的配置:
SOURCE类型的注解在编译期就被丢掉了;CLASS类型的注解仅保存在class文件中,它们不会被加载进JVM;RUNTIME类型的注解会被加载进JVM,并且在运行期可以被程序读取。
如何使用注解完全由工具决定。SOURCE类型的注解主要由编译器使用,因此我们一般只使用,不编写。CLASS类型的注解主要由底层工具库使用,涉及到class的加载,一般我们很少用到。只有RUNTIME类型的注解不但要使用,还经常需要编写。
因此,我们只讨论如何读取RUNTIME类型的注解。
因为注解定义后也是一种class,所有的注解都继承自java.lang.annotation.Annotation,因此,读取注解,需要使用反射API。
Java提供的使用反射API读取Annotation的方法包括:
判断某个注解是否存在于Class、Field、Method或Constructor:
Class.isAnnotationPresent(Class)Field.isAnnotationPresent(Class)Method.isAnnotationPresent(Class)Constructor.isAnnotationPresent(Class)
例如:
// 判断@Report是否存在于Person类:
Person.class.isAnnotationPresent(Report.class);
使用反射API读取Annotation:
Class.getAnnotation(Class)Field.getAnnotation(Class)Method.getAnnotation(Class)Constructor.getAnnotation(Class)
例如:
// 获取Person定义的@Report注解:
Report report = Person.class.getAnnotation(Report.class);
int type = report.type();
String level = report.level();
使用反射API读取Annotation有两种方法。方法一是先判断Annotation是否存在,如果存在,就直接读取:
Class cls = Person.class;
if (cls.isAnnotationPresent(Report.class)) {
Report report = cls.getAnnotation(Report.class);
...
}
第二种方法是直接读取Annotation,如果Annotation不存在,将返回null:
Class cls = Person.class;
Report report = cls.getAnnotation(Report.class);
if (report != null) {
...
}
读取方法、字段和构造方法的Annotation和Class类似。但要读取方法参数的Annotation就比较麻烦一点,因为方法参数本身可以看成一个数组,而每个参数又可以定义多个注解,所以,一次获取方法参数的所有注解就必须用一个二维数组来表示。例如,对于以下方法定义的注解:
public void hello(@NotNull @Range(max=5) String name, @NotNull String prefix) {
}
要读取方法参数的注解,我们先用反射获取Method实例,然后读取方法参数的所有注解:
// 获取Method实例:
Method m = ...
// 获取所有参数的Annotation:
Annotation[][] annos = m.getParameterAnnotations();
// 第一个参数(索引为0)的所有Annotation:
Annotation[] annosOfName = annos[0];
for (Annotation anno : annosOfName) {
if (anno instanceof Range) { // @Range注解
Range r = (Range) anno;
}
if (anno instanceof NotNull) { // @NotNull注解
NotNull n = (NotNull) anno;
}
}
使用注解
注解如何使用,完全由程序自己决定。例如,JUnit是一个测试框架,它会自动运行所有标记为@Test的方法。
我们来看一个@Range注解,我们希望用它来定义一个String字段的规则:字段长度满足@Range的参数定义:
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.FIELD)
public @interface Range {
int min() default 0;
int max() default 255;
}
在某个JavaBean中,我们可以使用该注解:
public class Person {
@Range(min=1, max=20)
public String name;
@Range(max=10)
public String city;
}
但是,定义了注解,本身对程序逻辑没有任何影响。我们必须自己编写代码来使用注解。这里,我们编写一个Person实例的检查方法,它可以检查Person实例的String字段长度是否满足@Range的定义:
void check(Person person) throws IllegalArgumentException, ReflectiveOperationException {
// 遍历所有Field:
for (Field field : person.getClass().getFields()) {
// 获取Field定义的@Range:
Range range = field.getAnnotation(Range.class);
// 如果@Range存在:
if (range != null) {
// 获取Field的值:
Object value = field.get(person);
// 如果值是String:
if (value instanceof String) {
String s = (String) value;
// 判断值是否满足@Range的min/max:
if (s.length() < range.min() || s.length() > range.max()) {
throw new IllegalArgumentException("Invalid field: " + field.getName());
}
}
}
}
}
这样一来,我们通过@Range注解,配合check()方法,就可以完成Person实例的检查。注意检查逻辑完全是我们自己编写的,JVM不会自动给注解添加任何额外的逻辑。
小结
可以在运行期通过反射读取RUNTIME类型的注解,注意千万不要漏写@Retention(RetentionPolicy.RUNTIME),否则运行期无法读取到该注解。
可以通过程序处理注解来实现相应的功能:
- 对JavaBean的属性值按规则进行检查;
- JUnit会自动运行
@Test标记的测试方法。
997

被折叠的 条评论
为什么被折叠?



