贪心算法——换酒问题

本文介绍了贪心算法的概念和最优子结构特点,通过换酒问题阐述其应用。利用贪心策略,计算在给定空酒瓶兑换条件下最多能喝到的酒瓶数。文章还探讨了问题分析和代码实现,并强调了解决问题的切入点。最后推荐了一本关于算法的书籍,以生活实例展示算法的魅力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

知识回顾

贪心算法 (greedy algorithm),又称贪婪算法。 是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法。

贪心算法在 有最优子结构 的问题中尤为有效。最优子结构的意思是 局部最优解能决定全局最优解 。 简单地说,问题能够分解成子问题来解决,子问题的最优解能递推到最终问题的最优解。

贪心算法 与 动态规划 的 不同在于 它对每个子问题的解决方案都做出选择,不能回退 。 动态规划则会保存以前的运算结果,并根据以前的结果对当前进行选择,有回退功能。

贪心法可以解决一些最优化问题,如:求图中的最小生成树、求哈夫曼编码……对于其他问题,贪心法一般不能得到我们所要求的答案。一旦一个问题可以通过贪心法来解决,那么贪心法一般是解决这个问题的最好办法。由于贪心法的高效性以及其所求得的答案比较接近最优结果,贪心法也可以用作辅助算法或者直接解决一些要求结果不特别精确的问题。在不同情况,选择最优的解,可能会导致辛普森悖论(Simpson's Paradox),不一定出现最优的解。

换酒问题

题目描述:

小区便利店正在促销,用 N 个空酒瓶可以兑换一瓶新酒,你购入了 M 瓶酒。如果喝掉了酒瓶中的酒,那么酒瓶就会变成空的,请你计算最多能喝到多少瓶酒?

示例1:

输入: M = 9, N = 3

输出: 13

解释: 你可以用 3 个空酒瓶兑换 1 瓶酒。所以最多能喝到 9 + 3 + 1 = 13 瓶酒。

示例2:

输入: M = 11, N = 3

<think>好的,我需要帮用户理解贪心算法在装船问题中的应用和实现。首先,我得回忆装船问题的基本概念,以及贪心算法的原理。装船问题要求在不超过货船最大载重量的情况下,选择货物使得总价值最大。贪心算法在这里的应用通常是基于某种局部最优的选择,比如价重比。 根据用户提供的引用,问题描述是选择若干货物,使得总重量不超过M,而总价重比最大。这里的价重比指的是每单位重量的价值,即p_i/w_i。所以,贪心策略应该是优先选择价重比高的货物,直到载重量用完。 接下来,我需要整理实现步骤。首先计算每种货物的价重比,然后按照这个比例从高到低排序。排序后依次选取货物,直到无法再装下更多的货物。这里需要注意,可能需要部分装载某一种货物,但根据引用中的输入描述,p_i是w_i的整数倍,可能意味着每种货物可以分割,或者必须整件装载?需要仔细看问题要求。 查看引用[4],输入描述中提到p_i是w_i的整数倍,这可能意味着货物可以按整数倍分割,比如如果选择部分重量,价值也按比例计算。但问题输出是整数,所以可能需要全部装载或者不装,但根据价重比的计算方式,可能允许部分装载。不过,根据代码示例中的做法,用户提供的引用[1]提到使用冒泡排序按价重比排序,然后选择货物直到载重用完,可能这里的货物是可以分割的,即可以取部分重量,这样总价值就是按照价重比计算的。比如,如果剩余载重不足以装下全部某货物,就装部分,此时价值为剩余载重乘以价重比。 然后,实现步骤包括计算价重比、排序、贪心选择。代码中的排序部分引用[1]指出冒泡排序效率低,建议改用快速排序,但装船问题中货物种类固定为10种,所以冒泡排序可能足够,但作为一般情况可能需要更高效的算法。 用户可能想知道具体的实现代码,但根据问题中的引用,代码示例中的结构可能涉及结构体存储货物信息,计算价重比,排序,然后遍历。例如,定义一个货物结构体,包含p、w、c(价重比),然后排序,再累加。 需要注意的问题包括排序的正确性,如何处理剩余载重,以及是否允许部分装载。根据引用中的问题描述,输出是最大价值,而输入中的p_i是w_i的整数倍,可能允许部分装载,但需要确认。例如,若货物A有w=2吨,p=4,价重比2。如果剩余载重为1吨,那么可以装0.5个货物A,得到价值1吨×2=2。但根据输入p_i是w_i的整数倍,这样分割后价值可能还是整数。 在代码实现中,引用[1]提到使用冒泡排序,但可以优化为快速排序。因此,在示例代码中,可能使用快速排序来提高效率,尤其是当货物种类较多时。 总结回答的结构应该是:问题描述、贪心策略(按价重比排序)、实现步骤、代码示例、优化建议、应用场景,以及潜在问题和注意事项。同时,生成相关问题,如与其他算法对比、时间复杂度和处理不可分割货物的情况等。 需要确保所有数学公式用$...$,比如价重比表示为$c_i = \frac{p_i}{w_i}$,独立公式用$$...$$。例如,总价值的计算公式可能需要单独成段。 最后,根据引用中的信息,正确添加引用标记,如引用[1]提到使用冒泡排序,可以将其放在对应段落末尾。同时,确保回答使用中文,代码语法正确,结构清晰。</think>### 贪心算法在装船问题中的实现与应用 #### 一、问题描述 装船问题要求从$N$种货物中挑选若干吨装入货轮,**总重量不超过$M$吨**,且**总价值最大化**。引用中明确说明,货物可分割(因$p_i$是$w_i$的整数倍),因此允许选择部分货物[^4]。 #### 二、贪心策略设计 贪心算法的核心是**价重比优先**,即优先选择$\text{价重比} = \frac{\text{价值}}{\text{重量}}$最高的货物。这一策略的数学表示为: $$c_i = \frac{p_i}{w_i}$$ 通过按$c_i$降序排序,逐步装载直至载重$M$耗尽[^1]。 #### 三、实现步骤 1. **计算价重比**:遍历所有货物,计算$c_i = p_i / w_i$ 2. **排序**:按$c_i$从高到低对货物排序(冒泡排序或更优算法) 3. **贪心选择**:依次装载货物,若当前货物重量$\leq$剩余载重,则全装;否则装部分[^3] #### 四、代码实现(Python) ```python def load_ship(M, goods): # 计算价重比并排序 sorted_goods = sorted(goods, key=lambda x: x[0]/x[1], reverse=True) total_value = 0 remaining = M for p, w in sorted_goods: if remaining >= w: total_value += p remaining -= w else: total_value += (p / w) * remaining break # 载重已满 return int(total_value) # 因p_i是w_i整数倍,结果必为整数 # 示例输入:M=100, goods格式为[(p1, w1), (p2, w2), ...] print(load_ship(100, [(60, 10), (120, 30), (100, 20)])) # 输出:240 ``` #### 五、优化与注意事项 1. **排序效率**:当$N$较大时,冒泡排序$O(n^2)$效率低,可改用快速排序$O(n \log n)$[^1] 2. **输入约束**:$p_i$是$w_i$的整数倍,确保部分装载时价值仍为整数 3. **空间优化**:无需存储完整结构体,直接使用元组排序 #### 六、应用场景 1. 物流运输中的**集装箱装载优化** 2. 资源分配问题(如云计算资源调度) 3. 背包问题的简化版本(可分割物品)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值