本篇文章主要实现在TensorFlow平台下识别MNIST数据集上的0-9十个数字,通过随机梯度下降算法优化参数,准确率在30000次迭代后保持在98.4%。
下面是完整的代码:
'''MNIST数字识别问题'''
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
INPUT_NODE = 784 #输入层节点数
OUTPUT_NODE = 10 #输出层节点数
LAYER1_NODE = 500 #隐藏层节点数
BATCH_SIZE = 100 #一个batch中训练数据的个数
LEARNING_RATE_BASE = 0.8 #初始学习率
LEARNING_RATE_DECAY = 0.99 #学习率的衰减率
REGULARIZATION_RATE = 0.0001 #描述模型复杂度的正则化在损失函数中的系数
TRAINING_STEPS = 30000 #训练轮数
MOVING_AVERAGE_DECAY = 0.99 #滑动平均衰减率
'''计算神经网络的前向传播结果'''
def inference(input_tensor,avg_class,weights1,biases1,weights2,biases2):
if avg_class == None:
layer1 = tf.nn.relu(tf.matmul(input_tensor,weights1)+biases1)
return tf.matmul(layer1,weights2)+biases2
else:
layer1 = tf.nn.relu(tf.matmul(input_tensor,avg_class.average(weights1))+avg_class.average(biases1))
return tf.matmul(layer1,avg_class.average(weights2))+avg_class.average(biases2)
'''训练模型的过程'''
def train(mnist):
x = tf.placeholder(tf.float32,[None,INPUT_NODE],name='x-input')
y_ = tf.placeholder(tf.float32,[None,OUTPUT_NODE],name='y-input')
weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE,LAYER1_NODE],stddev=0.1))
biases1 = tf.Variable(tf.constant(0.1,shape=[LAYER1_NODE]))
weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE,OUTPUT_NODE],stddev=0.1))
biases2 = tf.Variable(tf.constant(0.1,shape=[OUTPUT_NODE]))
y =inference(x,None,weights1,biases1,weights2,biases2)
global_step = tf.Variable(0,trainable=False)
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY,global_step)
variable_averages_op = variable_averages.apply(tf.trainable_variables())
average_y = inference(x,variable_averages,weights1,biases1,weights2,biases2)
'''计算交叉謪'''
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=tf.argmax(y_,1),logits=y)
cross_entropy_mean = tf.reduce_mean(cross_entropy)
'''计算L2正则化损失函数'''
regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
regularization = regularizer(weights1) + regularizer(weights2)
loss = cross_entropy_mean + regularization #损失函数等于两部分相加
learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,mnist.train.num_examples/BATCH_SIZE,LEARNING_RATE_DECAY)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss,global_step=global_step)
train_op = tf.group(train_step,variable_averages_op)
correct_prediction = tf.equal(tf.argmax(average_y,1),tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
'''初始化会话并开始训练过程'''
with tf.Session() as sess:
#tf.initialize_all_variables().run()
tf.global_variables_initializer().run()
validate_feed = {x:mnist.validation.images,y_:mnist.validation.labels}
test_feed = {x:mnist.test.images,y_:mnist.test.labels}
for i in range(TRAINING_STEPS):
if i % 1000 == 0:
validate_acc = sess.run(accuracy,feed_dict=validate_feed)
print("After %d training step(s),validation accuracy""using average model is %g " % (i,validate_acc))
xs,ys = mnist.train.next_batch(BATCH_SIZE)
sess.run(train_op,feed_dict={x:xs,y_:ys})
test_acc = sess.run(accuracy,feed_dict=test_feed)
print("After %d training step(s),test accuracy using average ""model is %g" % (TRAINING_STEPS,test_acc))
def main(argv=None):
mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
train(mnist)
if __name__ == '__main__':
tf.app.run()
运行结果:

本文介绍了一种使用TensorFlow实现的手写数字识别方法,在MNIST数据集上达到了98.4%的准确率。该模型采用单层全连接神经网络,并通过随机梯度下降进行参数优化。
1927

被折叠的 条评论
为什么被折叠?



