ECMAScript6语法入门笔记(一)

本文主要介绍ES6中let和const命令。ES6声明变量有六种方法,新增了let和const等。let不存在变量提升,有暂时性死区,不允许在相同作用域重复声明变量;const声明常量,本质是保证变量指向的内存地址数据不变,对复合类型数据使用需谨慎。
1 let 和 const 命令
1.1 ES6声明变量有六种方法:

ES5 只有两种声明变量的方法:var命令和function命令,ES6 除了添加letconst命令,还有class命令和import命令。 let、const和class命令声明的全局变量,不属于顶层对象的属性。
例如:

var a = 1;
// 如果在 Node 的 REPL 环境,可以写成 global.a
// 或者采用通用方法,写成 this.a
window.a // 1

let b = 1;
window.b // undefined
1.2 新增let命令(const命令声明的为常量,其它与let大致相同)
  1. let命令声明如下:
{
    let a = 10; //let声明的变量只在let命令所在的代码块内有效
    var b = 1;
}

  1. let不存在变量提升,存在暂时性死区(TDZ),const语句也不出现变量提升var命令有“变量提升”现象,let命令不存在,必须在变量声明之后才能使用,否则报错ReferenceError,而var不会报错,会显示underfined.
    例如:
var tmp = 123;
if (true) {
  tmp = 'abc'; // ReferenceError
  let tmp;
}

if(true){
    //TDZ开始
    tem = 'abc'; //ReferenceError
    console.log(tmp); //ReferenceError

    let tmp; //TDZ结束
    console.log(tmp); //underfined

    tmp = 123;
    console.log(tmp); //123
}

总之,暂时性死区的本质就是,只要一进入当前作用域,所要使用的变量就已经存在了,但是不可获取,只有等到声明变量的那一行代码出现,才可以获取和使用该变量。

  1. let不允许在相同作用域内,重复声明同一个变量。
    例如:
// 报错
function func() {
  let a = 10;
  var a = 1;
}

// 报错
function func() {
  let a = 10;
  let a = 1;
}

不能在函数内部重新声明参数,如:

function func(arg) {
  let arg;
}
func() // 报错

function func(arg) {
  {
    let arg;
  }
}
func() // 不报错
  1. 块级作用域
    外层作用域无法读取其它内层作用域的内部变量,但内层作用域可以使用外层作用域的let变量。

  2. 块级作用域与函数声明

// 块级作用域内部的函数声明语句,建议不要使用
{
  let a = 'secret';
  function f() {
    return a;
  }
}

// 块级作用域内部,优先使用函数表达式
{
  let a = 'secret';
  let f = function () {
    return a;
  };
}
要带大括号,才能成立作用域
// 第一种写法,报错
if (true) let x = 1;

// 第二种写法,不报错
if (true) {
  let x = 1;
}
1.3 const的本质:
  • const实际上保证的,并不是变量的值不得改动,而是变量指向的那个内存地址所保存的数据不得改动。
  • 对于简单类型的数据(数值、字符串、布尔值),值就保存在变量指向的那个内存地址,因此等同于常量。
  • 但对于复合类型的数据(主要是对象和数组),变量指向的内存地址,保存的只是一个指向实际数据的指针,const只能保证这个指针是固定的(即总是指向另一个固定的地址),至于它指向的数据结构是不是可变的,就完全不能控制了。因此,将一个对象声明为常量必须非常小心。
const foo = {};
// 为 foo 添加一个属性,可以成功
foo.prop = 123;
foo.prop // 123

// 将 foo 指向另一个对象,就会报错
foo = {}; // TypeError: "foo" is read-only

上面代码中,常量foo储存的是一个地址,这个地址指向一个对象。不可变的只是这个地址,即不能把foo指向另一个地址,但对象本身是可变的,所以依然可以为其添加新属性。 ES6 内部使用严格相等运算符(===),判断一个位置是否有值。
所以,只有当一个数组成员严格等于undefined,默认值才会生效。
例如:

let [foo=true] = [];
foo //true
let [x,y = 'b'] = ['a']; // x='a',y='b'
let [x,y = 'b'] = ['a',undefined]; // x='a',y='b'
let [x = 1, y = x] = [];     // x=1; y=1
let [x = 1, y = x] = [2];    // x=2; y=2
let [x = 1, y = x] = [1, 2]; // x=1; y=2
let [x = y, y = 1] = [];     // ReferenceError: y is not defined
基于TROPOMI高光谱遥感仪器获取的大气成分观测资料,本研究聚焦于大气污染物氧化氮(NO₂)的空间分布与浓度定量反演问题。NO₂作为影响空气质量的关键指标,其精确监测对环境保护与大气科学研究具有显著价值。当前,利用卫星遥感数据结合先进算法实现NO₂浓度的高精度反演已成为该领域的重要研究方向。 本研究构建了套以深度学习为核心的技术框架,整合了来自TROPOMI仪器的光谱辐射信息、观测几何参数以及辅助气象数据,形成多维度特征数据集。该数据集充分融合了不同来源的观测信息,为深入解析大气中NO₂的时空变化规律提供了数据基础,有助于提升反演模型的准确性与环境预测的可靠性。 在模型架构方面,项目设计了种多分支神经网络,用于分别处理光谱特征与气象特征等多模态数据。各分支通过独立学习提取代表性特征,并在深层网络中进行特征融合,从而综合利用不同数据的互补信息,显著提高了NO₂浓度反演的整体精度。这种多源信息融合策略有效增强了模型对复杂大气环境的表征能力。 研究过程涵盖了系统的数据处理流程。前期预处理包括辐射定标、噪声抑制及数据标准化等步骤,以保障输入特征的质量与致性;后期处理则涉及模型输出的物理量转换与结果验证,确保反演结果符合实际大气浓度范围,提升数据的实用价值。 此外,本研究进步对不同功能区域(如城市建成区、工业带、郊区及自然背景区)的NO₂浓度分布进行了对比分析,揭示了人类活动与污染物空间格局的关联性。相关结论可为区域环境规划、污染管控政策的制定提供科学依据,助力大气环境治理与公共健康保护。 综上所述,本研究通过融合TROPOMI高光谱数据与多模态特征深度学习技术,发展了套高效、准确的大气NO₂浓度遥感反演方法,不仅提升了卫星大气监测的技术水平,也为环境管理与决策支持提供了重要的技术工具。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值