集合——练习2

本文介绍两种使用Java去除ArrayList中重复元素的方法。第一种通过双重循环比较元素并移除重复项;第二种利用临时列表存储非重复元素,再将这些元素复制回原始列表。
package cn.jason.list.test;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
public class ArrayListTest2 {
 public static void main(String[] args) {
  /*
   * 练习2:定义功能,请去除ArrayList集合中的重复元素
   */
  List list = new ArrayList();
  
  list.add("abc1");
  list.add("abc4");
  list.add("abc2");
  list.add("abc1");
  list.add("abc4");
  list.add("abc2");
  list.add("abc1");
  list.add("abc4");
  list.add("abc2");
  
  System.out.println(list);
//  singleElement(list);
  singleElement2(list);
  System.out.println(list);
 }
 /**
  * 去除重复元素方式二
  * 思路:
  * 1.最后唯一性的元素也很多,可以先定义一个容器用于存储这些唯一性的元素。
  * 2.对原有容器进行元素的获取,并到临时容器中去判读是否存在。判读元素是否存在,容器本身就有这个功能。
  * 3.存在就不存储,不存在就存储
  * 4.遍历完原容器后,临时容器中就存储着唯一元素
  */
 public static void singleElement2(List list)
 {
  //1.定义一个临时容器
  List temp = new ArrayList();
  //2.遍历原容器
  for(Iterator it = list.iterator();it.hasNext();) {
   Object obj = (Object)it.next();
  //3.在临时容器中判读元素是否存在
   if(!temp.contains(obj))
   {
    temp.add(obj);
   }
  }
  //5.将原容器清空
  list.clear();
  //6.将临时容器中的元素都存储到原容器中
  list.addAll(temp);
 }
 
 /**
  * 定义功能
  * 去除重复元素方式一
  */
 public static void singleElement(List list)
 {
  for(int x = 0;x<list.size();x++)
  {
   Object obj = list.get(x);
   for (int y = x+1; y < list.size(); y++) {
    if (obj.equals(list.get(y))) {
     list.remove(y);
     y--;
    }
   }
  }
 }
}
训练数据保存为deep_convnet_params.pkl,UI使用wxPython编写。卷积神经网络(CNN)是一种专门针对图像、视频等结构化数据设计的深度学习模型,在计算机视觉、语音识别、自然语言处理等多个领域有广泛应用。其核心设计理念源于对生物视觉系统的模拟,主要特点包括局部感知、权重共享、多层级抽象以及空间不变性。 **1. 局部感知与卷积操作** 卷积层是CNN的基本构建块,使用一组可学习的滤波器对输入图像进行扫描。每个滤波器在图像上滑动,以局部区域内的像素值与滤波器权重进行逐元素乘法后求和,生成输出值。这一过程能够捕获图像中的边缘、纹理等局部特征。 **2. 权重共享** 同一滤波器在整个输入图像上保持相同的权重。这显著减少了模型参数数量,增强了泛化能力,并体现了对图像平移不变性的内在假设。 **3. 池化操作** 池化层通常紧随卷积层之后,用于降低数据维度并引入空间不变性。常见方法有最大池化和平均池化,它们可以减少模型对微小位置变化的敏感度,同时保留重要特征。 **4. 多层级抽象** CNN通常包含多个卷积和池化层堆叠在一起。随着网络深度增加,每一层逐渐提取更复杂、更抽象的特征,从底层识别边缘、角点,到高层识别整个对象或场景,使得CNN能够从原始像素数据中自动学习到丰富的表示。 **5. 激活函数与正则化** CNN中使用非线性激活函数来引入非线性表达能力。为防止过拟合,常采用正则化技术,如L2正则化和Dropout,以增强模型的泛化性能。 **6. 应用场景** CNN在诸多领域展现出强大应用价值,包括图像分类、目标检测、语义分割、人脸识别、图像生成、医学影像分析以及自然语言处理等任务。 **7. 发展与演变** CNN的概念起源于20世纪80年代,其影响力在硬件加速和大规模数据集出现后真正显现。经典模型如LeNet-5用于手写数字识别,而AlexNet、VGG、GoogLeNet、ResNet等现代架构推动了CNN技术的快速发展。如今,CNN已成为深度学习图像处理领域的基石,并持续创新。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
内容概要:本文介绍了一种基于CEEMDAN-BiLSTM的中短期天气预测模型,通过将完全集合经验模态分解自适应噪声(CEEMDAN)与双向长短期记忆网络(BiLSTM)相结合,实现对复杂气象时间序列的高精度预测。首先利用CEEMDAN对原始气象数据进行多尺度分解,获得多个本征模态函数(IMF)分量和残,有效解决模式混叠与噪声干扰问题;随后对各IMF分量分别构建BiLSTM模型进行独立预测,充分发挥其对前后时序依赖的建模能力;最后通过集成重构输出最终预测结果。文中还包含了数据预处理、特征提取、模型评估与可视化等完整流程,并提供了MATLAB实现的部分代码示例。该方法显著提升了天气预测的准确性与鲁棒性,适用于多类气象要素的中短期趋势预测。; 适合人群:具备一定机器学习和时间序列分析基础,从事气象、环境、能源等领域研究或工程应用的研发人员、高校研究生及数据科学家。; 使用场景及目标:①应用于温度、风速、降水等气象变量的中短期精准预测;②解决传统模型在非线性、多尺度气象信号建模中的局限性;③构建智能气象预测系统,服务于电力调度、灾害预警、智慧农业等实际业务场景。; 阅读建议:建议结合MATLAB代码实践操作,深入理解CEEMDAN分解机制与BiLSTM建模细节,重点关注数据预处理、模型参数调优与结果集成策略,同时可扩展至多变量联合预测以提升应用价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值