概念学习
许多机器学习问题涉及从特殊训练样例中得到一般概念。比如人们不断学习的一些一般概念和类别。每个概念可被看作一个对象或事件集合,它是从更大的集合中选取的子集(如从动物的集合中选取鸟类),或者是在这个较大集合中定义的布尔函数(如在动物集合中定义的函数,它对鸟类返回true,对其他动物返回false)。
小孩理解一个词义的例子
考虑一个小孩子理解“狗”这个词的意义。假设当小孩的父母指着一个动物对他说,“这是一只狗”,这是给出了概念的正例。而当小孩子看到一只猫时说,“这是一只狗”时,他父母会纠正他说,“这是一只猫,不是一只狗”,这是在主动学习过程中给出负例的情形。心理研究表明,人在学习概念时往往只是来源于正例数据。
理解一个词的含义等同于概念学习,同时也等同于二元分类。即当输入数据时一个概念的样例时,定义f(x)=1;否则f(x)=0。