系列文章之二:attention-based LSTM for Aspect-level sentiment classification
来源:EMNLP2016(可从前言文章中可看出,很多关于方面级的文章都是来自于这一期刊。)
问题:aspect level sentiment classification
一、aspect level情感分析
Explain: 给定句子和相应aspect word(target word),aspect level sdntiment classification的任务是判断所给句子在指定aspect/target上的情感倾向。
Key point: aspect level情感分析的关键问题在于捕捉不同的context word对于特定aspect的重要性,利用这个信息做句子的语义表示。
本文的前系列文章 Effective LSTMs for Target-dependnt sentiment classification propose TD-LSTM and TC-LSTM
本文在此基础上详细探讨了LSTM的作用,并引用了attention机制针对不同aspect进行不同重要性的分配,提出了AE-LSTM、AT-LSTM、ATAE-LSTM等模型进行试验的performance比较。
二、introduction and contributions
In this paper, we deal with aspect-level sentiment classification and we find that the sentiment polarity of a sentence is highly dependent on both content and aspect. For example, the sentiment polarity of “Staffs are not that friendly, but the taste covers all.”