本人乃机器学习小白,一直不是很清楚其实现算法的框架,通过了解或得如下总结,希望对各位有用。
摘要: 无论你是一个研究人员,还是开发者,亦或是管理者,想要使用机器学习,需要使用正确的工具来实现。本文介绍了当前最流行15个机器学习框架。
机器学习工程师是开发产品和构建算法团队中的一部分,并确保其可靠、快速和成规模地工作。他们和数据科学家密切合作来了解理论知识和行业应用。数据专家和机器学习工程师的主要区别是:
机器学习工程师构建、开发和维护机器学习系统的产品。
数据专家进行调查研究形成有关于机器学习项目的想法,然后分析来理解机器学习系统的度量影响。
下面是机器学习的框架介绍:
1.Apache Singa 是一个用于在大型数据集上训练深度学习的通用分布式深度学习平台,它是基于分层抽象的简单开发模型设计的。它还支持各种当前流行的深度学习模型,有前馈模型(卷积神经网络,CNN),能量模型(受限玻尔兹曼机,RBM和循环神经网络,RNN),还为用户提供了许多内嵌层。2.Amazon Machine Learning(AML)是一种让各种级别使用机器学习技术的开发人员可轻松掌握的一个服务,提供了视觉工具和向导,可以指导您在不必学习复杂的机器学习算法和技术的情况下建立机器学习。
3.Azure ML Studio允许微软Azure的用户创建和训练模型,随后将这些模型转化为能被其他服务使用的API。尽管您可以将自己的Azure存储链接到更大模型的服务,但是每个账户模型数据的存储容量最多不超过10GB。在Azure中有大量的算法可供使用,这要感谢微软和一些第三方。甚至你都不需