Top 10 Algorithms for Coding Interview

本文概述了十大编程面试算法主题,包括字符串/数组/矩阵操作、链表应用、树与堆结构、图的遍历、排序算法、递归与迭代、动态规划、位操作、概率计算及组合排列等问题,并提供了经典示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The following are top 10 algorithms related topics for coding interviews. As understanding those concepts requires much more effort, this list below only serves as an introduction. They are viewed from a Java perspective and the following topics will be covered: String/Array/Matrix, Linked List, Tree, Heap, Graph, Sorting, Recursion vs. Iteration, Dynamic Programming, Bit Manipulation, Probability, Combinations and Permutations, and other problems that need us to find patterns.

1. String/Array/Matrix

First of all, String in Java is a class that contains a char array and other fields and methods. Without code auto-completion of any IDE, the following methods should be remembered.

toCharArray() //get char array of a String
Arrays.sort()  //sort an array
Arrays.toString(char[] a) //convert to string
charAt(int x) //get a char at the specific index
length() //string length
length //array size 
substring(int beginIndex) 
substring(int beginIndex, int endIndex)
Integer.valueOf()//string to integer
String.valueOf()/integer to string

Strings/arrays are easy to understand, but questions related to them often require advanced algorithm to solve, such as dynamic programming, recursion, etc.

Classic problems:
1) Evaluate Reverse Polish Notation
2) Longest Palindromic Substring
3) Word Break
4) Word Ladder
5) Median of Two Sorted Arrays
6) Regular Expression Matching
7) Merge Intervals
8) Insert Interval
9) Two Sum
9) 3Sum
9) 4Sum
10) 3Sum Closest
11) String to Integer
12) Merge Sorted Array
13) Valid Parentheses
14) Implement strStr()
15) Set Matrix Zeroes
16) Search Insert Position
17) Longest Consecutive Sequence
18) Valid Palindrome
19) Spiral Matrix
20) Search a 2D Matrix
21) Rotate Image
22) Triangle
23) Distinct Subsequences Total
24) Maximum Subarray
25) Remove Duplicates from Sorted Array
26) Remove Duplicates from Sorted Array II
27) Longest Substring Without Repeating Characters
28) Longest Substring that contains 2 unique characters
29) Palindrome Partitioning

2. Linked List

The implementation of a linked list is pretty simple in Java. Each node has a value and a link to next node.

class Node {
	int val;
	Node next;
 
	Node(int x) {
		val = x;
		next = null;
	}
}

Two popular applications of linked list are stack and queue.

Stack

class Stack{
	Node top; 
 
	public Node peek(){
		if(top != null){
			return top;
		}
 
		return null;
	}
 
	public Node pop(){
		if(top == null){
			return null;
		}else{
			Node temp = new Node(top.val);
			top = top.next;
			return temp;	
		}
	}
 
	public void push(Node n){
		if(n != null){
			n.next = top;
			top = n;
		}
	}
}

Queue

class Queue{
	Node first, last;
 
	public void enqueue(Node n){
		if(first == null){
			first = n;
			last = first;
		}else{
			last.next = n;
			last = n;
		}
	}
 
	public Node dequeue(){
		if(first == null){
			return null;
		}else{
			Node temp = new Node(first.val);
			first = first.next;
			return temp;
		}	
	}
}

It is worth to mention that Java standard library already contains a class called “Stack“, and LinkedListcan be used as a Queue (add() and remove()). (LinkedList implements the Queue interface) If you need a stack or queue to solve problems during your interview, you can directly use them.

Classic Problems:
1) Add Two Numbers
2) Reorder List
3) Linked List Cycle
4) Copy List with Random Pointer
5) Merge Two Sorted Lists
6) Merge k Sorted Lists *
7) Remove Duplicates from Sorted List
8) Partition List
9) LRU Cache


3. Tree & Heap

Tree here is normally binary tree. Each node contains a left node and right node like the following:

class TreeNode{
	int value;
	TreeNode left;
	TreeNode right;
}

Here are some concepts related with trees:

  1. Binary Search Tree: for all nodes, left children <= current node <= right children
  2. Balanced vs. Unbalanced: In a balanced tree, the depth of the left and right subtrees of every node differ by 1 or less.
  3. Full Binary Tree: every node other than the leaves has two children.
  4. Perfect Binary Tree: a full binary tree in which all leaves are at the same depth or same level, and in which every parent has two children.
  5. Complete Binary Tree: a binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible

Heap is a specialized tree-based data structure that satisfies the heap property. The time complexity of its operations are important (e.g., find-min, delete-min, insert, etc). In Java, PriorityQueue is important to know.

Classic problems:
1) Binary Tree Preorder Traversal 
2) Binary Tree Inorder Traversal
3) Binary Tree Postorder Traversal
4) Word Ladder
5) Validate Binary Search Tree
6) Flatten Binary Tree to Linked List
7) Path Sum
8) Construct Binary Tree from Inorder and Postorder Traversal
9) Convert Sorted Array to Binary Search Tree
10) Convert Sorted List to Binary Search Tree
11) Minimum Depth of Binary Tree
12) Binary Tree Maximum Path Sum *
13) Balanced Binary Tree

4. Graph

Graph related questions mainly focus on depth first search and breath first search. Depth first search is straightforward, you can just loop through neighbors starting from the root node.

Below is a simple implementation of a graph and breath first search. The key is using a queue to store nodes.

breath-first-search

1) Define a GraphNode

class GraphNode{ 
	int val;
	GraphNode next;
	GraphNode[] neighbors;
	boolean visited;
 
	GraphNode(int x) {
		val = x;
	}
 
	GraphNode(int x, GraphNode[] n){
		val = x;
		neighbors = n;
	}
 
	public String toString(){
		return "value: "+ this.val; 
	}
}

2) Define a Queue

class Queue{
	GraphNode first, last;
 
	public void enqueue(GraphNode n){
		if(first == null){
			first = n;
			last = first;
		}else{
			last.next = n;
			last = n;
		}
	}
 
	public GraphNode dequeue(){
		if(first == null){
			return null;
		}else{
			GraphNode temp = new GraphNode(first.val, first.neighbors);
			first = first.next;
			return temp;
		}	
	}
}

3) Breath First Search uses a Queue

public class GraphTest {
 
	public static void main(String[] args) {
		GraphNode n1 = new GraphNode(1); 
		GraphNode n2 = new GraphNode(2); 
		GraphNode n3 = new GraphNode(3); 
		GraphNode n4 = new GraphNode(4); 
		GraphNode n5 = new GraphNode(5); 
 
		n1.neighbors = new GraphNode[]{n2,n3,n5};
		n2.neighbors = new GraphNode[]{n1,n4};
		n3.neighbors = new GraphNode[]{n1,n4,n5};
		n4.neighbors = new GraphNode[]{n2,n3,n5};
		n5.neighbors = new GraphNode[]{n1,n3,n4};
 
		breathFirstSearch(n1, 5);
	}
 
	public static void breathFirstSearch(GraphNode root, int x){
		if(root.val == x)
			System.out.println("find in root");
 
		Queue queue = new Queue();
		root.visited = true;
		queue.enqueue(root);
 
		while(queue.first != null){
			GraphNode c = (GraphNode) queue.dequeue();
			for(GraphNode n: c.neighbors){
 
				if(!n.visited){
					System.out.print(n + " ");
					n.visited = true;
					if(n.val == x)
						System.out.println("Find "+n);
					queue.enqueue(n);
				}
			}
		}
	}
}

Output:

value: 2 value: 3 value: 5 Find value: 5
value: 4

Classic Problems:
1) Clone Graph

5. Sorting

Time complexity of different sorting algorithms. You can go to wiki to see basic idea of them.

AlgorithmAverage TimeWorst TimeSpace
Bubble sortn^2n^21
Selection sortn^2n^21
Insertion sortn^2n^2 
Quick sortn log(n)n^2 
Merge sortn log(n)n log(n)depends

* BinSort, Radix Sort and CountSort use different set of assumptions than the rest, and so they are not “general” sorting methods. (Thanks to Fidel for pointing this out)

Here are some implementations/demos, and in addition, you may want to check out how Java developers sort in practice.
1) Mergesort
2) Quicksort
3) InsertionSort.

6. Recursion vs. Iteration

Recursion should be a built-in thought for programmers. It can be demonstrated by a simple example.

Question:

there are n stairs, each time one can climb 1 or 2. How many different ways to climb the stairs?

Step 1: Finding the relationship before n and n-1.

To get n, there are only two ways, one 1-stair from n-1 or 2-stairs from n-2. If f(n) is the number of ways to climb to n, then f(n) = f(n-1) + f(n-2)

Step 2: Make sure the start condition is correct.

f(0) = 0;
f(1) = 1;

public static int f(int n){
	if(n <= 2) return n;
	int x = f(n-1) + f(n-2);
	return x;
}

The time complexity of the recursive method is exponential to n. There are a lot of redundant computations.

f(5)
f(4) + f(3)
f(3) + f(2) + f(2) + f(1)
f(2) + f(1) + f(2) + f(2) + f(1)

It should be straightforward to convert the recursion to iteration.

public static int f(int n) {
 
	if (n <= 2){
		return n;
	}
 
	int first = 1, second = 2;
	int third = 0;
 
	for (int i = 3; i <= n; i++) {
		third = first + second;
		first = second;
		second = third;
	}
 
	return third;
}

For this example, iteration takes less time. You may also want to check out Recursion vs Iteration.

7. Dynamic Programming

Dynamic programming is a technique for solving problems with the following properties:

  1. An instance is solved using the solutions for smaller instances.
  2. The solution for a smaller instance might be needed multiple times.
  3. The solutions to smaller instances are stored in a table, so that each smaller instance is solved only once.
  4. Additional space is used to save time.


The problem of climbing steps perfectly fit those 4 properties. Therefore, it can be solve by using dynamic programming.

public static int[] A = new int[100];
 
public static int f3(int n) {
	if (n <= 2)
		A[n]= n;
 
	if(A[n] > 0)
		return A[n];
	else
		A[n] = f3(n-1) + f3(n-2);//store results so only calculate once!
	return A[n];
}

Classic problems:
1) Edit Distance
2) Longest Palindromic Substring
3) Word Break
4) Maximum Subarray

8. Bit Manipulation

Bit operators:

OR (|)AND (&)XOR (^)Left Shift (<<)Right Shift (>>)Not (~)
1|0=11&0=01^0=10010<<2=10001100>>2=0011~1=0

Get bit i for a give number n. (i count from 0 and starts from right)

public static boolean getBit(int num, int i){
	int result = num & (1<<i);
 
	if(result == 0){
		return false;
	}else{
		return true;
	}
}

For example, get second bit of number 10.

i=1, n=10
1<<1= 10
1010&10=10
10 is not 0, so return true;

Classic Problems:
1) Find Single Number
2) Maximum Binary Gap

9. Probability

Solving probability related questions normally requires formatting the problem well. Here is just a simple example of such kind of problems.

There are 50 people in a room, what’s the probability that two people have the same birthday? (Ignoring the fact of leap year, i.e., 365 day every year)

Very often calculating probability of something can be converted to calculate the opposite. In this example, we can calculate the probability that all people have unique birthdays. That is: 365/365 * 364/365 * 363/365 * … * 365-n/365 * … * 365-49/365. And the probability that at least two people have the same birthday would be 1 – this value.

public static double caculateProbability(int n){
	double x = 1; 
 
	for(int i=0; i<n; i++){
		x *=  (365.0-i)/365.0;
	}
 
	double pro = Math.round((1-x) * 100);
	return pro/100;
}

calculateProbability(50) = 0.97

10. Combinations and Permutations

The difference between combination and permutation is whether order matters.

Example 1:

Given 5 numbers – 1, 2, 3, 4 and 5, print out different sequence of the 5 numbers. 4 can not be the third one, 3 and 5 can not be adjacent. How many different combinations?

Example 2:

Given 5 banaba, 4 pear, and 3 apple, assuming one kind of fruit are the same, how many different combinations?

Class Problems:
1) Permutations
2) Permutations II 
3) Permutation Sequence

Some other problems need us to use observations to form rules to solve them:

1) Reverse Integer
2) Palindrome Number
3) Pow(x,n)
4) Subsets
5) Subsets II

基于数据挖掘的音乐推荐系统设计与实现 需要一个代码说明,不需要论文 采用python语言,django框架,mysql数据库开发 编程环境:pycharm,mysql8.0 系统分为前台+后台模式开发 网站前台: 用户注册, 登录 搜索音乐,音乐欣赏(可以在线进行播放) 用户登陆时选择相关感兴趣的音乐风格 音乐收藏 音乐推荐算法:(重点) 本课题需要大量用户行为(如播放记录、收藏列表)、音乐特征(如音频特征、歌曲元数据)等数据 (1)根据用户之间相似性或关联性,给一个用户推荐与其相似或有关联的其他用户所感兴趣的音乐; (2)根据音乐之间的相似性或关联性,给一个用户推荐与其感兴趣的音乐相似或有关联的其他音乐。 基于用户的推荐和基于物品的推荐 其中基于用户的推荐是基于用户的相似度找出相似相似用户,然后向目标用户推荐其相似用户喜欢的东西(和你类似的人也喜欢**东西); 而基于物品的推荐是基于物品的相似度找出相似的物品做推荐(喜欢该音乐的人还喜欢了**音乐); 管理员 管理员信息管理 注册用户管理,审核 音乐爬虫(爬虫方式爬取网站音乐数据) 音乐信息管理(上传歌曲MP3,以便前台播放) 音乐收藏管理 用户 用户资料修改 我的音乐收藏 完整前后端源码,部署后可正常运行! 环境说明 开发语言:python后端 python版本:3.7 数据库:mysql 5.7+ 数据库工具:Navicat11+ 开发软件:pycharm
MPU6050是一款广泛应用在无人机、机器人和运动设备中的六轴姿态传感器,它集成了三轴陀螺仪和三轴加速度计。这款传感器能够实时监测并提供设备的角速度和线性加速度数据,对于理解物体的动态运动状态至关重要。在Arduino平台上,通过特定的库文件可以方便地与MPU6050进行通信,获取并解析传感器数据。 `MPU6050.cpp`和`MPU6050.h`是Arduino库的关键组成部分。`MPU6050.h`是头文件,包含了定义传感器接口和函数声明。它定义了类`MPU6050`,该类包含了初始化传感器、读取数据等方法。例如,`begin()`函数用于设置传感器的工作模式和I2C地址,`getAcceleration()`和`getGyroscope()`则分别用于获取加速度和角速度数据。 在Arduino项目中,首先需要包含`MPU6050.h`头文件,然后创建`MPU6050`对象,并调用`begin()`函数初始化传感器。之后,可以通过循环调用`getAcceleration()`和`getGyroscope()`来不断更新传感器读数。为了处理这些原始数据,通常还需要进行校准和滤波,以消除噪声和漂移。 I2C通信协议是MPU6050与Arduino交互的基础,它是一种低引脚数的串行通信协议,允许多个设备共享一对数据线。Arduino板上的Wire库提供了I2C通信的底层支持,使得用户无需深入了解通信细节,就能方便地与MPU6050交互。 MPU6050传感器的数据包括加速度(X、Y、Z轴)和角速度(同样为X、Y、Z轴)。加速度数据可以用来计算物体的静态位置和动态运动,而角速度数据则能反映物体转动的速度。结合这两个数据,可以进一步计算出物体的姿态(如角度和角速度变化)。 在嵌入式开发领域,特别是使用STM32微控制器时,也可以找到类似的库来驱动MPU6050。STM32通常具有更强大的处理能力和更多的GPIO口,可以实现更复杂的控制算法。然而,基本的传感器操作流程和数据处理原理与Arduino平台相似。 在实际应用中,除了基本的传感器读取,还可能涉及到温度补偿、低功耗模式设置、DMP(数字运动处理器)功能的利用等高级特性。DMP可以帮助处理传感器数据,实现更高级的运动估计,减轻主控制器的计算负担。 MPU6050是一个强大的六轴传感器,广泛应用于各种需要实时运动追踪的项目中。通过 Arduino 或 STM32 的库文件,开发者可以轻松地与传感器交互,获取并处理数据,实现各种创新应用。博客和其他开源资源是学习和解决问题的重要途径,通过这些资源,开发者可以获得关于MPU6050的详细信息和实践指南
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值