Harry Potter and the Final Battle
Description
The final battle is coming. Now Harry Potter is located at city 1, and Voldemort is located at city n. To make the world peace as soon as possible, Of course, Harry Potter will choose the shortest road between city 1 and city n. But
unfortunately, Voldemort is so powerful that he can choose to destroy any one of the existing roads as he wish, but he can only destroy one. Now given the roads between cities, you are to give the shortest time that Harry Potter can reach city n and begin
the battle in the worst case.
Input
First line, case number t (t<=20).
Then for each case: an integer n (2<=n<=1000) means the number of city in the magical world, the cities are numbered from 1 to n. Then an integer m means the roads in the magical world, m (0< m <=50000). Following m lines, each line with three integer u, v, w (u != v,1 <=u, v<=n, 1<=w <1000), separated by a single space. It means there is a bidirectional road between u and v with the cost of time w. There may be multiple roads between two cities.
Then for each case: an integer n (2<=n<=1000) means the number of city in the magical world, the cities are numbered from 1 to n. Then an integer m means the roads in the magical world, m (0< m <=50000). Following m lines, each line with three integer u, v, w (u != v,1 <=u, v<=n, 1<=w <1000), separated by a single space. It means there is a bidirectional road between u and v with the cost of time w. There may be multiple roads between two cities.
Output
Each case per line: the shortest time to reach city n in the worst case. If it is impossible to reach city n in the worst case, output “-1”.
Sample Input
3 4 4 1 2 5 2 4 10 1 3 3 3 4 8 3 2 1 2 5 2 3 10 2 2 1 2 1 1 2 2
Sample Output
15 -1 2#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<queue> using namespace std; const int N=1010; const int M=100010; const int INF=0xffffff; struct Edge { int u; int to; int w; int flag; int next; } e[M]; int head[N]; int dist[N]; int path[N]; int inq[N]; int n,m,cnt,flag; void AddEdge(int u,int v,int w) { e[cnt].u=u; e[cnt].to=v; e[cnt].w=w; e[cnt].flag=1; e[cnt].next=head[u]; head[u]=cnt++; } int SPFA(int s) { queue<int>Q; for(int i=1; i<=n; i++) { dist[i]=INF; inq[i]=0; } dist[s]=0; inq[s]=1; Q.push(s); while(!Q.empty()) { int u=Q.front(); Q.pop(); inq[u]=0; for(int j=head[u]; j!=-1; j=e[j].next) { int x=e[j].to; if(e[j].flag&&dist[x]>dist[u]+e[j].w) { dist[x]=dist[u]+e[j].w; if(!flag) path[x]=j; if(!inq[x]) { Q.push(x); inq[x]=1; } } } } return dist[n]; } int main() { //freopen("C:\\Users\\Administrator\\Desktop\\kd.txt","r",stdin); int t; scanf("%d",&t); while(t--) { cnt=flag=0; memset(head,-1,sizeof(head)); scanf("%d%d",&n,&m); while(m--) { int u,v,w; scanf("%d%d%d",&u,&v,&w); AddEdge(u,v,w); AddEdge(v,u,w); } memset(path,-1,sizeof(path)); SPFA(1); flag=1; int i=n,j=-1; int res=-1; while(path[i]!=-1) { j=path[i]; e[j].flag=e[j+1].flag=0; int tmp=SPFA(1); e[j].flag=e[j+1].flag=1; if(tmp>res) res=tmp; i=e[j].u; } if(res<INF) printf("%d\n",res); else puts("-1"); } }

文章探讨了在魔法世界中,哈利波特如何在最短时间内到达目的地,与伏地魔进行最终决战的问题。通过SPFA算法解决最短路径问题,并在最优情况下避免道路被破坏。
4万+

被折叠的 条评论
为什么被折叠?



