
Accept: 883 Submit: 2075
Time Limit: 1000 mSec Memory Limit : 32768 KB
Problem Description
You are given two positive integers A and B in Base C. For the equation:
We know there always existing many non-negative pairs (k, d) that satisfy the equation above. Now in this problem, we want to maximize k.
For example, A="123" and B="100", C=10. So both A and B are in Base 10. Then we have:
(1) A=0*B+123
(2) A=1*B+23
As we want to maximize k, we finally get one solution: (1, 23)
The range of C is between 2 and 16, and we use 'a', 'b', 'c', 'd', 'e', 'f' to represent 10, 11, 12, 13, 14, 15, respectively.
Input
The first line of the input contains an integer T (T≤10), indicating the number of test cases.
Then T cases, for any case, only 3 positive integers A, B and C (2≤C≤16) in a single line. You can assume that in Base 10, both A and B is less than 2^31.
Output
Sample Input
Sample Output
Source
“高教社杯”第三届福建省大学生程序设计竞赛 #include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>
using namespace std;
int judge(char p[],int x)
{
int len=strlen(p),ans=0,k,l=1;
for(int i=len-1;i>=0;i--)
{
if(p[i]>='0'&&p[i]<='9')
k=p[i]-'0';
else
k=p[i]-'a'+10;
ans+=l*k;
l*=x;
}
return ans;
}
int main()
{
int t,c;
scanf("%d",&t);
while(t--)
{
int ans1,ans2,ans3,ans4;
char s1[105],s2[105];
scanf("%s%s%d",s1,s2,&c);
ans1=judge(s1,c);//调用函数转换
ans2=judge(s2,c);
ans3=ans1/ans2;
ans4=ans1%ans2;
printf("(%d,%d)\n",ans3,ans4);
}
return 0;
}