关于单例模式的DoubleCheckLock同步的思考

在javaeye上看到很多朋友都提出单例模式的一些变种实现,比如加入了即时加载和DoubleCheckLock机制,来提高并发性能。但事实上这些机制真的必要吗? 

目前公认影响单例性能的要素有两个:一是实例构造时间开销,一是获取单例实例的同步阻塞开销。 

我的理解是,并发相对与同步阻塞的优势,在于当两条线程中的一条在执行时间开销较大的操作,而另一条线程无须执行该操作,则并发执行保证了开销小的线程不需等待开销大的,能正常执行完毕。然而,如果所有线程都只执行一些基本的操作,例如“返回结果”,“变量赋值”,“判断跳转”等,是否并发执行对性能并没有实质性的提升。差别只在于到底在jdk层面在同步块上排队,还是在cpu层面在时间片分配上排队。 

对于一个基本的单例模式,在每个jvm中肯定只会发生一次单例构造。同步机制虽然保护的是构造过程,但99%时间锁的是返回结果过程。而对于这种基本操作,有锁和无锁差别真的是这么大(据说有100倍的差别)吗? 

网上常见的单例实现有以下几种: 

1. 延迟加载的基本实现 
Java代码   收藏代码
  1. public class Singleton {     
  2.   
  3.     private static Singleton instance = null;     
  4.   
  5.     public static synchronized Singleton getInstance() {  
  6.         if (instance == null) {  
  7.             instance = new Singleton();  
  8.         }  
  9.         return instance;  
  10.     }  
  11. }  

2. 即时加载的基本实现 
Java代码   收藏代码
  1. public class Singleton {     
  2.   
  3.     private static Singleton instance = new Singleton();     
  4.   
  5.     public static Singleton getInstance() {  
  6.         return instance;  
  7.     }  
  8. }  

3. DoubleCheck同步延迟加载 
Java代码   收藏代码
  1. public class Singleton {     
  2.   
  3.     private static Singleton instance = null;     
  4.   
  5.     public static Singleton getInstance() {  
  6.         if (instance == null) {  
  7.             synchronized (Singleton.class) {  
  8.                 if (instance == null) {  
  9.                     instance = new Singleton();  
  10.                 }  
  11.             }  
  12.         }  
  13.         return instance;  
  14.     }  
  15. }  


举个极端的量化例子,假如有一个单例对象被500条线程使用。单例的构造器中由于使用了一些耗时的资源,执行一次约为1s。但如果单例实例已经创建好,在getInstance()中直接return该实例,耗时为0.1ms。这500条线程中的其中200条会每隔10分钟(以机器内时钟为准)同时访问这个单例对象。 

另外,先假定并发操作对于一些基本的操作,例如方法返回,赋值,判断跳转等不会带来性能上的大幅提升(这与JDK的实现有关)。换句话说,200条线程中“返回实例”动作,无论是否在同步块中,总耗时都是0.1*200=20ms。 

那么, 

第一种情况:首次访问时,第一条线程锁住getInstance(),并执行1s的实际构造逻辑并返回实例(耗时1.0001秒),其他199条线程依次排队。在单例构造好后再依次获取实例,最慢一条线程耗时1.02秒。 二次访问时,所有线程都依次排队获取实例,最慢一条线程耗时0.02秒 

第二种情况:在类装载时,构造单例实例耗时1s。首次访问时,200条线程并发获取实例,由于在cpu上还是要排队,最慢一条线程耗时0.02秒。(也就是说,从系统启动到首次访问完成,耗时1.02秒)。二次访问时,所有线程都并发获取实例,最慢一条线程耗时0.02秒。 

第三种情况:首次访问时,与第一种情况类似(因为所有线程都通过了instance == null,在同步块上排队),最慢线程耗时1.02秒。二次访问时,所有线程都并发获取实例,但由于增加了条件判断(假设判断跳转时间为1ms),最慢一条线程耗时约为0.04秒。 

可以看出,如果假定并发对基本操作时间无影响时,综合性能第一种和第二种一致,第三种最低,但差别均在微秒级别,事实上可以忽略。 

需要注意的是,对于一个单例来说,上面例子中的线程总数500是个多余量,对结果完全没有影响。换句话说,是否延迟加载对于单个单例的性能没有影响。 

如果假定jdk的实现使得基本操作在并发环境下性能较高,假设返回结果与条件判断的平均性能在并发下能提高1倍(双核?),变成0.05ms。那么, 
第一种情况(完全没有利用并发):首次访问最慢线程:1.02秒,二次访问最慢线程0.02秒。 
第二种情况:类载入时:1秒,首次访问最慢线程0.01秒(系统启动到完成首次访问总耗时1.01秒),二次访问最慢线程0.01秒 
第三种情况:首次访问最慢线程1.01秒,二次访问最慢线程0.02秒。 

同样可以看出,三种情况即使有差别,但差别均在微秒级别,事实上可以忽略。而且如果要较真的话,第三种情况还可能会慢,关键在于并发环境下返回结果的性能提升能否抵消多出来的两次判断跳转。 

上面讨论的是一个单例被多条线程同时使用的情况。延时读取是考虑的是系统中存在 大量不同单例 的某些特殊情况。例如即时加载的劣势,体现在如果系统中有50个不同的单例类,而在某条执行路线上只载入了其中2个,即时加载会导致其他48个单例实例被无谓地创建。问题是在系统中定义了大量的单例类(要注意单例是难以继承的),而主线逻辑中又只使用了其中少量的现实场景究竟有多少。 

综上,个人感觉在一般场景中,基本延迟加载方案与基本即时加载方案的效果是差不多的,完全可以根据个人喜好选择。除非已知系统中会出现“单例类爆炸”,而主流程又只使用其中少量的情况,那么就需要在团队中强制推行延迟加载方案。DoubleCheck同步加载方案需要证明“返回结果这种基本操作在并发环境下能带来实质的性能提升,足以抵消额外的条件判断的性能损耗”的前提下,才值得推广。 


转载:http://kidneyball.iteye.com/blog/850053

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值