Volley的框架的终结篇
之前都是各个模块讲解,当然Volley其实也是各个模块分开了,职责分明,这样探索源码,可以各个突破,最后顺着使用流程去看一遍就会融汇贯通
使用
RequestQueue mQueue = Volley.newRequestQueue(this);
StringRequest stringRequest =
new StringRequest("http://www.baidu.com", new Response.Listener<String>() {
@Override public void onResponse(String response) {
Log.d("TAG", response);
}
}, new Response.ErrorListener() {
@Override public void onErrorResponse(VolleyError error) {
Log.e("TAG", error.getMessage(), error);
}
});
mQueue.add(stringRequest);
newRequestQueue()
public static RequestQueue newRequestQueue(Context context, HttpStack stack) {
...
if (stack == null) {
if (Build.VERSION.SDK_INT >= 9) {
stack = new HurlStack();
} else {
stack = new HttpClientStack(AndroidHttpClient.newInstance(userAgent));
}
}
Network network = new BasicNetwork(stack);
RequestQueue queue = new RequestQueue(new DiskBasedCache(cacheDir), network);
queue.start();
return queue;
这里看重点:
1.HttpStack
代码中根据版本选了,连接网络使用HttpConnection还是HttpClient
这一块要看细节的可以看我之前写的
Volley的框架解读一(Http的封装)
我简单的说一下吧,无论是HurlStack和HttpClientStack都实现了HttpStack,接口中有个performRequest()方法
performRequest():就是获取连接网络获取的所有内容,接着封装成一个实体类返回了.
2.Network
返回给谁了呢,就是它 BasicNetwork 他实现了NetWork,performRequest()中对HttpStack返回实体类,取出返回码,根据返回码又做了一些实体类赋值,然后就返回了实体类,
如果不太对Network理解的,可以看我之前写的 Volley的框架解读二(Http访问及处理)
3.RequestQueue
Network的返回值就是返回给他了,我们看构造方法
private static final int DEFAULT_NETWORK_THREAD_POOL_SIZE = 4;
public RequestQueue(Cache cache, Network network) {
this(cache, network, DEFAULT_NETWORK_THREAD_POOL_SIZE);
}
public RequestQueue(Cache cache, Network network, int threadPoolSize) {
this(cache, network, threadPoolSize,
new ExecutorDelivery(new Handler(Looper.getMainLooper())));
}
public RequestQueue(Cache cache, Network network, int threadPoolSize,
ResponseDelivery delivery) {
mCache = cache;
mNetwork = network;
mDispatchers = new NetworkDispatcher[threadPoolSize];
mDelivery = delivery;
}
构造方法中,设置了缓存策略,Network,NetworkDispatcher(网络线程)核心线程为4,ResponseDelivery消息分发机制
接着我看start方法:
public void start() {
stop(); // Make sure any currently running dispatchers are stopped.
// Create the cache dispatcher and start it.
mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);
mCacheDispatcher.start();
// Create network dispatchers (and corresponding threads) up to the pool size.
for (int i = 0; i < mDispatchers.length; i++) {
NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,
mCache, mDelivery);
mDispatchers[i] = networkDispatcher;
networkDispatcher.start();
}
}
这里启动了缓存线程和4个网络线程,我们再看看其中线程中做了什么?
缓存线程
线程嘛,主要看run方法
public void run() {
...
//缓存初始化,会根据你缓存策略进行初始化
mCache.initialize();
while (true) {
try {
//获取请求
final Request<?> request = mCacheQueue.take();
request.addMarker("cache-queue-take");
//请求取消了,直接跳过
if (request.isCanceled()) {
request.finish("cache-discard-canceled");
continue;
}
Cache.Entry entry = mCache.get(request.getCacheKey());
//如果为空直接进行网络请求
if (entry == null) {
request.addMarker("cache-miss");
mNetworkQueue.put(request);
continue;
}
//如果已经请求过时了重新网络请求
if (entry.isExpired()) {
request.addMarker("cache-hit-expired");
request.setCacheEntry(entry);
mNetworkQueue.put(request);
continue;
}
request.addMarker("cache-hit");
//根据使用者实现的request子类,将返回的数据处理结果得到
Response<?> response = request.parseNetworkResponse(
new NetworkResponse(entry.data, entry.responseHeaders));
request.addMarker("cache-hit-parsed");
if (!entry.refreshNeeded()) {
mDelivery.postResponse(request, response);
} else {
request.addMarker("cache-hit-refresh-needed");
request.setCacheEntry(entry);
response.intermediate = true;
mDelivery.postResponse(request, response, new Runnable() {
@Override
public void run() {
try {
mNetworkQueue.put(request);
} catch (InterruptedException e) {
// Not much we can do about this.
}
}
});
}
} catch (InterruptedException e) {
// We may have been interrupted because it was time to quit.
if (mQuit) {
return;
}
continue;
}
}
}
可以看出缓存线程,也就是对request中的缓存标识符识别后,进行处理,最后如果有缓存,就分发给了使用者 mDelivery.postResponse(request, response);
因为使用者都是继承request来得到访问内容的,可以猜想postResponse里肯定通过request把内容回调回去了,当然只是猜想还是得看源码
@Override
public void postResponse(Request<?> request, Response<?> response, Runnable runnable) {
request.markDelivered();
request.addMarker("post-response");
mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, runnable));
}
private class ResponseDeliveryRunnable implements Runnable {
private final Request mRequest;
private final Response mResponse;
private final Runnable mRunnable;
public ResponseDeliveryRunnable(Request request, Response response, Runnable runnable) {
mRequest = request;
mResponse = response;
mRunnable = runnable;
}
@SuppressWarnings("unchecked")
@Override
public void run() {
if (mRequest.isCanceled()) {
mRequest.finish("canceled-at-delivery");
return;
}
if (mResponse.isSuccess()) {
mRequest.deliverResponse(mResponse.result);
} else {
mRequest.deliverError(mResponse.error);
}
if (mResponse.intermediate) {
mRequest.addMarker("intermediate-response");
} else {
mRequest.finish("done");
}
if (mRunnable != null) {
mRunnable.run();
}
}
}
终于在ResponseDeliveryRunnable中看了我们熟悉的两个方法deliverResponse,deliverError
网络线程
大家可以猜想,之前看的缓存线程,基本可以套用在网络线程中,大家就看看源码哈,代码都有注释
public void run() {
// 设置该线程的优先级
Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
// 从网络请求队列中获取的请求
Request<?> request;
//会一直在网络请求队列中读取request 如果网络请求队列为空则等待
while (true) {
try {
// 方法.take()是一个阻塞方法,如果网络队列中没有请求,那么会一直等待。直到获取一个请求
request = mQueue.take();
} catch (InterruptedException e) {
// 如果该请求被interrupt了 那么就放弃该请求,开始获取下一个请求
if (mQuit) {
return;
}
continue;
}
try {
request.addMarker("network-queue-take");
// network request. 如果该请求被取消了,那么就放弃当前请求 开始下一个请求
if (request.isCanceled()) {
request.finish("network-discard-cancelled");
continue;
}
addTrafficStatsTag(request);
// Perform the network request.
// 访问网络,得到数据
NetworkResponse networkResponse = mNetwork
.performRequest(request);
request.addMarker("network-http-complete");
//如果响应状态码是304(304表示该次响应返回值与上次没变化,也就是说可以使用上次的响应),并且该请求已经被分发了,那么就开始下一次请求
if (networkResponse.notModified
&& request.hasHadResponseDelivered()) {
request.finish("not-modified");
continue;
}
//将响应解析出来
Response<?> response = request
.parseNetworkResponse(networkResponse);
request.addMarker("network-parse-complete");
// 写入缓存
if (request.shouldCache() && response.cacheEntry != null) {
mCache.put(request.getCacheKey(), response.cacheEntry);
request.addMarker("network-cache-written");
}
//标记还请求已经被分配响应了
request.markDelivered();
mDelivery.postResponse(request, response);
} catch (VolleyError volleyError) {
//如果出现错误,那就传递错误信息
parseAndDeliverNetworkError(request, volleyError);
} catch (Exception e) {
VolleyLog.e(e, "Unhandled exception %s", e.toString());
mDelivery.postError(request, new VolleyError(e));
}
}
}
整个Volley 就这样结束了,当然其中可以看到的是,代码中学到了很多东西,比如:
- 为了减少byte[]的创建及销毁的内存消耗,引入了缓存池
- 为了让使用者更大程度的,封装成自己的网络解析,把request抽象了,给使用者自己实现
- 同时引入了缓存线程,减少网络请求
- 代码中各个模块之间,职责分明,最后用组合的方法,形成一个新的功能