题目:Follow up for "Unique Paths":Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively
in the grid.
For example,There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
思路:动态规划
本题不是特别的难,只需要判断下是否空格为1,如果为1,则sum为0,不是1的话,那么就和第一题一样。
代码:
class Solution {
public:
//https://leetcode.com/problems/unique-paths-ii/
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
const int m=obstacleGrid.size(),n=obstacleGrid[0].size();
if(obstacleGrid[0][0]==1||obstacleGrid[m-1][n-1]==1){
return 0;
}
int sum[m][n];
sum[0][0]=1;
for(int i=1;i<n;i++){
sum[0][i]=obstacleGrid[0][i]==0?sum[0][i-1]:0;
}//如果等于1,直接为0;如果不为1,和前面相同
for(int i=1;i<m;i++){
sum[i][0]=obstacleGrid[i][0]==0?sum[i-1][0]:0;
}
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
sum[i][j] = obstacleGrid[i][j]==0?(sum[i-1][j]+sum[i][j-1]):0;
}
}
return sum[m-1][n-1];
}
};