有趣的多线程编程(4)——死锁

// DeadLockSample.cs
// 分析一下为什么会发生死锁?

using System;
using System.Threading;

public class Test
{
    static readonly object firstLock = new object();
    static readonly object secondLock = new object();
    
    static void Main()
    {
        new Thread(new ThreadStart(ThreadJob)).Start();
        
        // Wait until we're fairly sure the other thread
        // has grabbed firstLock
        Thread.Sleep(500);
        
        Console.WriteLine ("Locking secondLock");
        lock (secondLock)
        {
            Console.WriteLine ("Locked secondLock");
            Console.WriteLine ("Locking firstLock");
            lock (firstLock)
            {
                Console.WriteLine ("Locked firstLock");
            }
            Console.WriteLine ("Released firstLock");
        }
        Console.WriteLine("Released secondLock");
    }
    
    static void ThreadJob()
    {
        Console.WriteLine ("/t/t/t/tLocking firstLock");
        lock (firstLock)
        {
            Console.WriteLine("/t/t/t/tLocked firstLock");
            // Wait until we're fairly sure the first thread
            // has grabbed secondLock
            Thread.Sleep(1000);
            Console.WriteLine("/t/t/t/tLocking secondLock");
            lock (secondLock)
            {
                Console.WriteLine("/t/t/t/tLocked secondLock");
            }
            Console.WriteLine ("/t/t/t/tReleased secondLock");
        }
        Console.WriteLine("/t/t/t/tReleased firstLock");
    }
}

  
  
Locking firstLock
Locked firstLock
Locking secondLock
Locked secondLock
Locking firstLock Locking secondLock

因应之道,使用Queue和Monitor:

//QueueMonitorThread.cs

using System;
using System.Collections;
using System.Threading;

public class Test
{
    static ProducerConsumer queue;
    
    static void Main()
    {
        queue = new ProducerConsumer();
        new Thread(new ThreadStart(ConsumerJob)).Start();
        
        Random rng = new Random(0);
        for (int i=0; i < 10; i++)
        {
            Console.WriteLine ("Producing {0}", i);
            queue.Produce(i);
            Thread.Sleep(rng.Next(1000));
        }
    }
    
    static void ConsumerJob()
    {
        // Make sure we get a different random seed from the
        // first thread
        Random rng = new Random(1);
        // We happen to know we've only got 10 
        // items to receive
        for (int i=0; i < 10; i++)
        {
            object o = queue.Consume();
            Console.WriteLine ("/t/t/t/tConsuming {0}", o);
            Thread.Sleep(rng.Next(1000));
        }
    }
}

public class ProducerConsumer
{
    readonly object listLock = new object();
    Queue queue = new Queue();

    public void Produce(object o)
    {
        lock (listLock)
        {
            queue.Enqueue(o);
            if (queue.Count==1)
            {
                Monitor.Pulse(listLock);
            }
        }
    }
    
    public object Consume()
    {
        lock (listLock)
        {
            while (queue.Count==0)
            {
                Monitor.Wait(listLock);
            }
            return queue.Dequeue();
        }
    }
}

  
  
Producing 0 Consuming 0
Producing 1 Consuming 1
Producing 2 Consuming 2
Producing 3 Consuming 3
Producing 4
Producing 5 Consuming 4
Producing 6 Consuming 5
                                         Consuming 6
Producing 7 Consuming 7
Producing 8 Consuming 8
Producing 9 Consuming 9


Trackback: http://tb.blog.youkuaiyun.com/TrackBack.aspx?PostId=589246

内容概要:本文详细介绍了基于FPGA的144输出通道可切换电压源系统的设计与实现,涵盖系统总体架构、FPGA硬件设计、上位机软件设计以及系统集成方案。系统由上位机控制软件(PC端)、FPGA控制核心和高压输出模块(144通道)三部分组成。FPGA硬件设计部分详细描述了Verilog代码实现,包括PWM生成模块、UART通信模块和温度监控模块。硬件设计说明中提及了FPGA选型、PWM生成方式、通信接口、高压输出模块和保护电路的设计要点。上位机软件采用Python编写,实现了设备连接、命令发送、序列控制等功能,并提供了一个图形用户界面(GUI)用于方便的操作和配置。 适合人群:具备一定硬件设计和编程基础的电子工程师、FPGA开发者及科研人员。 使用场景及目标:①适用于需要精确控制多通道电压输出的实验环境或工业应用场景;②帮助用户理解和掌握FPGA在复杂控制系统中的应用,包括PWM控制、UART通信及多通道信号处理;③为研究人员提供一个可扩展的平台,用于测试和验证不同的电压源控制算法和策略。 阅读建议:由于涉及硬件和软件两方面的内容,建议读者先熟悉FPGA基础知识和Verilog语言,同时具备一定的Python编程经验。在阅读过程中,应结合硬件电路图和代码注释,逐步理解系统的各个组成部分及其相互关系。此外,实际动手搭建和调试该系统将有助于加深对整个设计的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值