Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
- Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
- Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
5 17
Sample Output
4
Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
题意是:
给定一个起点,有三种方法能到达终点,分别是:
1.每次减 1
2.每次加 1
- 每次以乘 2 前进
求最少的步数(用BFS)
分为两种情况:
一个是 n>=k 就只能以第一种的方法向后退,最少步数就是两数的 差
另一种是 n<=k 的情况
满足范围即入队列,对当前的坐标进行标记,步数加1;到达目标点返回结果
代码如下:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#define memset(a,n) memset(a,n,sizeof(a))
#define INF 0x3f3f3f3f
using namespace std;
typedef long long LL;
const int MAXX = 1e5+10;
struct NODE
{
int x;
int step;
}now,pre,t;
int vis[MAXX];
queue<NODE> q;
int BFS(int x,int y)
{
while(!q.empty())
q.pop();
pre.x = x;
pre.step = 0;
q.push(pre);
vis[x] = 1;
while(!q.empty()){
now = q.front();
q.pop();
for(int i=0; i<=2; i++){
if(i == 0)
t.x = now.x - 1;
else if(i == 1)
t.x = now.x + 1;
else if(i == 2)
t.x = now.x * 2;
if(t.x >= 0 && t.x <= 100000 && vis[t.x] == 0){
if(t.x == y)
return now.step + 1;
else {
vis[t.x] = 1;
t.step = now.step + 1;
q.push(t);
}
}
}
}
}
int main()
{
int n,k,ans;
memset(vis,0);
cin >> n >> k;
if(k <= n)
cout << n-k << endl;
else {
ans = BFS(n,k);
cout << ans << endl;
}
}