★ halo,大家好很开心又和大家见面了
★ 在第一篇 楠姐技术漫画:图计算的那些事 发布之后,楠姐收到了很多建议、鼓励和支持,非常感谢大家的喜欢,所以楠姐尽自己所能马不停蹄开始第二篇的创作,虽迟但到~
★ 本篇依然是风控算法分享,其实也依然算是图算法系列。社区发现作为最基础的图算法之一,也是楠姐在2020年入职后,第一个跟着大腿有样学样,学习、上手和应用的图算法,因此在第一期之后,楠姐就立刻决定把它单独拿出来写一期,进一步来说,无论图计算今天和日后发展如何,我们都不该忘记最初的前人基石,同时也希望自己和每个小伙伴,无论路已走多远,都能不忘初心,不忘滴水之恩。

— ★ PART 1 ★—
其实社区发现
也并不是什么难懂的名词
相信所有看过第一期漫话的宝子们
应该还没忘记图的概念
那社区又是什么呢?

社区其实反映的是
网络中的个体行为的局部性特征
以及其相互之间的关联关系
换通俗一些的说法…

用户之间的点赞、私信、关注等动作形成了边
那些关联尤为紧密的用户就形成一个社区
而分属不同社区的用户之间
关联则非常稀疏或根本不存在关联
近几年流行的饭圈文化就是一个很好的例子

明白了什么是社区
其实社区发现所要做的事也就很易懂了
正是要发现这些潜在的、有特定关系的节点集合
以及每个社区中都有哪些节点
这样做的目的和效果也有很多

我们京东的注册/营销/支付/物流/信贷等各大系统
黑产团伙在很多细节上的关联总是非常紧密的
与正常用户显得格格不入

再比如生物学领域内
基因调控网络分析、主控基因识别
还有疾病传播学中
传染关键社区识别以及易感人群发现等

还有上一期评论区中提到的
👍基于社交网络的海王识别器👍
都可以用到社区划分

一是要确认当前使用场景内
确实存在着明显聚集规律
节点间存在一定的逻辑可以形成社区结构
而不是无规律分散

二是不要把社区拓扑结构与欧式空间结构混淆
虽然在欧式空间中
向量夹角小的点向量彼此距离近
向量夹角大的点向量彼此距离远
但即使距离相近的点向量
也不一定就存在业务或者逻辑上的拓扑关联

牢记以上两点
才不会让你的社区划分被限制使用方式或失效
— ★

本文介绍了社区发现算法,包括其基本概念、与聚类的区别,以及Louvain算法和infomap算法的实例。文章强调了在风控技术中社区发现的重要性,展示了算法如何在复杂网络中揭示结构。
最低0.47元/天 解锁文章
2258

被折叠的 条评论
为什么被折叠?



