汉诺塔问题求解

本文介绍了汉诺塔问题及其递归解决方法。通过一个具体实例,演示了如何使用递归算法将不同大小的盘子从一根柱子移动到另一根柱子,并保持正确的顺序。文章还解释了递归的基本原理及其实现过程。

  汉诺塔问题的描述如下:有3根柱子ABC,在A上从下往上按照从小到大的顺序放着64个圆盘,以B为中介,把盘子全部移动到C上。移动过程中,要求任意盘子的下面要么没有盘子,要么只能有比它大的盘子。本实例实现了3阶汉诺塔问题的求解,实例运行效果如图


   为了将第N个盘子从A移动到C,需要先将第N个盘子上面的N-1个盘子移动到B上,这样才能将第N个盘子移动到C上。同理,为了将第N-1个盘子从B移动到C上,需要将N-2个盘子移动到A上,这样才能将第N-1个盘子移动到C上。通过递归就可以实现汉诺塔问题的求解,其最少移动次数为2n-1

   编写类HanoiTower,在该类中包含了两个方法,moveDish()方法使用递归来实现问题的求解,main()方法用来进行测试。代码如下:

package com.mingrisoft.oop;

public class HanoiTower {
    public static void moveDish(int level, char from, char inter, char to) {
        if (level == 1) {
            System.out.println("从 " + from + " 移动盘子 1 号到 " + to);
        } else {
            moveDish(level - 1, from, to, inter);
            System.out.println("从 " + from + " 移动盘子 " + level + " 号到 " + to);
            moveDish(level - 1, inter, from, to);
        }
    }
    
    public static void main(String[] args) {
        int nDisks = 3;
        moveDish(nDisks, 'A', 'B', 'C');
    }
}

  

   心法领悟static方法的使用。

   当类所实现的功能与具体的对象无关时,可以使用static方法。如果将类中的static方法声明为public的,则既可以使用“类名.方法名”的方式来访问该static方法,又可以使用“对象.方法名”的方式访问。通常推荐前者,因为它能更好地表示static关键字的含义。

 
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值