leetcode--189. 轮转数组

这篇博客介绍了LeetCode 189题的三种解决方案,包括使用额外数组、反转数组以及环状替换方法。每种方法详细阐述了思路和实现,并分析了它们的时间复杂度和空间复杂度。最后总结了各种方法的优缺点,帮助读者根据需求选择合适的解题策略。

给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。

示例 1:
输入: nums = [1,2,3,4,5,6,7], k = 3
输出: [5,6,7,1,2,3,4]
解释:
向右轮转 1 步: [7,1,2,3,4,5,6]
向右轮转 2 步: [6,7,1,2,3,4,5]
向右轮转 3 步: [5,6,7,1,2,3,4]
示例 2:
输入:nums = [-1,-100,3,99], k = 2
输出:[3,99,-1,-100]
解释:
向右轮转 1 步: [99,-1,-100,3]
向右轮转 2 步: [3,99,-1,-100]

提示:
1 <= nums.length <= 105
-231 <= nums[i] <= 231 - 1
0 <= k <= 105

进阶:
尽可能想出更多的解决方案,至少有 三种 不同的方法可以解决这个问题。
你可以使用空间复杂度为 O(1) 的 原地 算法解决这个问题吗?

题解

方法1:使用额外数组

思路:创建一个新的数组来存放轮转后的元素。对于原数组中的每个元素,计算它在新数组中的位置,并将其复制到新位置上。这种方法的关键在于计算新位置时使用模运算(i + k) % n来确保索引不会超出数组的界限。

实现

public void rotate(int[] nums, int k) {
    int n = nums.length;
    int[] newArr = new int[n];
    for (int i = 0; i < n; i++) {
        newArr[(i + k) % n] = nums[i];
    }
    System.arraycopy(newArr, 0, nums, 0, n);
}

这种方法的时间复杂度为O(n),空间复杂度为O(n),因为需要一个与原数组同样大小的额外数组来存放结果。

方法2:使用反转

思路:这种方法不需要使用额外的空间。首先将整个数组反转,这样末尾的k个元素就被移动到了数组的前面。然后,分别反转数组的前k个元素和剩下的元素,以恢复这些元素的原始顺序。

实现

public void rotate(int[] nums, int k) {
    k %= nums.length;
    reverse(nums, 0, nums.length - 1);
    reverse(nums, 0, k - 1);
    reverse(nums, k, nums.length - 1);
}

private void reverse(int[] nums, int start, int end) {
    while (start < end) {
        int temp = nums[start];
        nums[start] = nums[end];
        nums[end] = temp;
        start++;
        end--;
    }
}

这种方法的时间复杂度为O(n),空间复杂度为O(1)。通过三次反转操作,实现了数组的轮转而不需要额外的存储空间。

方法3:环状替换

思路:通过计算每个元素的最终位置,并将其放到正确的位置上,同时保持空间复杂度为O(1)。这个方法避免了使用额外的数组空间,通过一次遍历完成所有元素的移动。

实现

public void rotate(int[] nums, int k) {
    k %= nums.length;
    int count = 0;
    for (int start = 0; count < nums.length; start++) {
        int current = start;
        int prev = nums[start];
        do {
            int next = (current + k) % nums.length;
            int temp = nums[next];
            nums[next] = prev;
            prev = temp;
            current = next;
            count++;
        } while (start != current);
    }
}

这种方法的时间复杂度为O(n),空间复杂度为O(1)。它通过环状替换的方式,一次遍历就完成了所有元素的正确移动,无需额外空间。

总结

这三种方法各有优缺点,使用额外数组的方法最直观简单,但空间复杂度较高;使用反转的方法空间复杂度最优,实现也相对简单;环状替换方法同样保持了O(1)的空间复杂度,但实现相对复杂。选择哪种方法取决于对时间复杂度和空间复杂度的具体要求。

# 力扣hot100刷题记录表 ### 一,哈希部分 - [ ] 1. 两数之和 (简单) - [ ] 2. 字母异位词分组(中等) - [ ] 3. 最长连续序列(中等) ### 二,双指针部分 - [ ] 4. 移动零(简单) - [ ] 5. 盛水最多的容器 (中等) - [ ] 6. 三数之和 (中等) - [ ] 7. 接雨水(困难) ### 三,滑动窗口 - [ ] 8. 无重复字符的最长子串(中等) - [ ] 9. 找到字符中所有的字母异位词(中等) ### 四,子串 - [ ] 10. 和为k的子数组(中等) - [ ] 11. 滑动窗口最大值(困难) - [ ] 12. 最小覆盖子窜(困难) ### 五,普通数组 - [ ] 13. 最大子数组和(中等) - [ ] 14. 合并区间(中等) - [ ] 15. 轮转数组(中等) - [ ] 16. 除自身以外数组的乘积(中等) - [ ] 17. 缺失的第一个正数(困难) ### 六,矩阵 - [ ] 18. 矩阵置零(中等) - [ ] 19. 螺旋矩阵 (中等) - [ ] 20. 旋转图像 (中等) - [ ] 21. 搜索二维矩阵Ⅱ (中等) ### 七,链表 - [ ] 22. 相交链表 (简单) - [ ] 23. 反转链表 (简单) - [ ] 24. 回文链表 (简单) - [ ] 25. 环形链表 (简单) - [ ] 26. 环形链表Ⅱ (中等) - [ ] 27. 合并两个有序链表 (简单) - [ ] 28. 两数相加 (中等) - [ ] 29. 删除链表的倒数第 N 个结点 (中等) - [ ] 30. 两两交换链表中的节点 (中等) - [ ] 31. K个一组翻转链表 (困难) - [ ] 32. 随机链表的复制 (中等) - [ ] 33. 排序链表 (中等) - [ ] 34. 合并 K 个升序链表 (困难) - [ ] 35. LRU 缓存 (中等) ### 八,二叉树 - [ ] 36. 二叉树的中序遍历 (简单) - [ ] 37. 二叉树的最大深度 (简单) - [ ] 38. 翻转二叉树 (简单) - [ ] 39. 对称二叉树 (简单) - [ ] 40. 二叉树的直径 (简单) - [ ] 41. 二叉树的层序遍历 (中等) - [ ] 42. 将有序数组转换为二叉搜索树 (简单) - [ ] 43. 验证二叉搜索树 (中等) - [ ] 44. 二叉搜索树中第 K 小的元素 (中等) - [ ] 45. 二叉树的右视图 (中等) - [ ] 46. 二叉树展开为链表 (中等) - [ ] 47. 从前序与中序遍历序列构造二叉树 (中等) - [ ] 48. 路径总和 III (中等) - [ ] 49. 二叉树的最近公共祖先 (中等) - [ ] 50. 二叉树中的最大路径和 (困难) ### 九,图论 - [ ] 51. 岛屿数量 (中等) - [ ] 52. 腐烂的橘子 (中等) - [ ] 53. 课程表 (中等) - [ ] 54. 实现 Trie(前缀树) (中等) ### 十,回溯 - [ ] 55.全排列(中等) - [ ] 56.子集(中等) - [ ] 57.电话号码的字母组合(中等) - [ ] 58.组合总和(中等) - [ ] 59.括号生成(中等) - [ ] 60.单词搜索(中等) - [ ] 61.分割回文串(中等) - [ ] 62.N 皇后 (困难) ### 十一,二分查找 - [ ] 63. 搜索插入位置 (简单) - [ ] 64. 搜索二维矩阵 (中等) - [ ] 65. 在排序数组中查找元素的第一个和最后一个位置 (中等) - [ ] 66. 搜索旋转排序数组 (中等) - [ ] 67. 寻找旋转排序数组中的最小值 (中等) - [ ] 68. 寻找两个正序数组的中位数 (困难) ### 十二,栈 - [ ] 69. 有效的括号 (简单) - [ ] 70. 最小栈 (中等) - [ ] 71. 字符串解码 (中等) - [ ] 72. 每日温度 (中等) - [ ] 73. 柱状图中最大的矩形 (困难) ### 十三,堆 - [ ] 74. 数组中的第K个最大元素 (中等) - [ ] 75. 前K 个高频元素 (中等) - [ ] 76. 数据流的中位数 (闲难) ### 十四,贪心算法 - [ ] 77. 买卖股票的最佳时机 (简单) - [ ] 78. 跳跃游戏 (中等) - [ ] 79. 跳跃游戏 III (中等) - [ ] 80. 划分字母区间 (中等) ### 十五,动态规划 - [ ] 81. 爬楼梯(简单) - [ ] 82. 杨辉三角 (简单) - [ ] 83. 打家劫舍 (中等) - [ ] 84. 完全平方数 (中等) - [ ] 85. 零钱兑换 (中等) - [ ] 86. 单词拆分 (中等) - [ ] 87. 最长递增子序列 (中等) - [ ] 88. 乘积最大子数组 (中等) ### 十六,多维动态规划 - [ ] 91. 不同路径 (中等) - [ ] 92. 最小路径和 (中等) - [ ] 93. 最长回文子串 (中等) - [ ] 94. 最长公共子序列 (中等) - [ ] 95. 编辑距离 (中等) ### 十七,技巧 - [ ] 96. 只出现一次的数字 (简单) - [ ] 97. 多数元素 (简单) - [ ] 98. 颜色分类 (中等) - [ ] 99. 下一个排列 (中等) - [ ] 100. 寻找重复数 (中等) 如何使用
07-20
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值