人工智能面试题分享(含答案)

本文分享了人工智能领域的面试题目,涵盖深度学习框架TensorFlow、过拟合、核函数、朴素贝叶斯、监督学习、模型选择、图形数据库Neo4J、LR与SVM的对比以及聚类等知识点,旨在帮助求职者准备面试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

现在人工智能就业前景怎么样?学完人工智能相关课程好找工作吗?目前国内人工智能领域正在高速发展,各大企业都在积极布局人工智能技术应用。想要从事人工智能相关工作,不但要了解国内整体的发展方向。而进入企业唯有基础才是最好的敲门砖。今天从网络采编了一些关于人工智能的面试题。希望对近期求知的小伙伴有一定的帮助。

在这里插入图片描述
人工智能面试题分享(含答案)

1、深度学习框架TensorFlow中有哪四种常用交叉熵?
  
  答: tf.nn.weighted_cross_entropy_with_logits
  tf.nn.sigmoid_cross_entropy_with_logits
  tf.nn.softmax_cross_entropy_with_logits
  tf.nn.sparse_softmax_cross_entropy_with_logits

2、什么叫过拟合,避免过拟合都有哪些措施?
  
  答:过拟合:就是在机器学习中,我么测试模型的时候,提高了在训练数据集的表现力时候,
  但是在训练集上的表现力反而下降了。
  解决方案:
  1.正则化 ;
  2.在训练模型过程中,调节参数。学习率不要太大;
  3.对数据进行交叉验证;
  4.选择适合训练集合测试集数据的百分比,选取合适的停止训练标准,使对机器的训练在合适;
  5.在神经网络模型中,我们可以减小权重;

3、什么是核函数?
  
  核函数是将线性不可分的特征隐射到高位特征空间,从而让支持向量机在这个高维空间线性可分,也就是使用核函数可以向高维空间映射并解决非线性的分类问题。包括线性核函数,多项式核函数,高斯核函数等,其中高斯核函数最为常用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值