机器学习和深度学习的区别是什么?随着业内对数据科学和机器学习使用的日益增长的趋势,对于每个想要生存下来的公司来说,重视机器学习将变得非常重要。今天小编从应用场景、所需数据量、数据依赖性、硬件依赖、特征处理、执行时间、解决问题的方法这几个方面的对比他们之前的区别。
机器学习和深度学习的区别
深度学习与机器学习的主要区别是在于性能。当数据量很少的时候,深度学习的性能并不好,因为深度学习算法需要大量数据才能很好理解其中蕴含的模式,接下来我们具体分析下。
一、机器学习和深度学习概念:
1、机器学习
机器学习(Machine Learning,ML)是人工智能的子领域,也是人工智能的核心。它囊括了几乎所有对世界影响最大的方法(包括深度学习)。机器学习理论主要是设计和分析一些让计算机可以自动学习的算法。
2、深度学习
深度学习(DeepLearning,DL)属于机器学习的子类。它的灵感来源于人类大脑的工作方式,是利用深度神经网络来解决特征表达的一种学习过程。深度神经网络本身并非是一个全新的概念,可理解为包含多个隐含层的神经网络结构。为了提高深层神经网络的训练效果,人们对神经元的连接方法以及激活函数等方面做出了调整。其目的在于建立、模拟人脑进行分析学习的神经网络,模仿人脑的机制来解释数据,如文本、图像、声音。
深度学习是一种特殊的机器学习,通过学习将世界使用嵌套的概念层次来表示并实现巨大的功能和灵活性,其中每个概念都定义为与简单概念相关联,而更为抽象的表示则以较不抽象的方式来计算。
机器学习与深度学习的区别&#