题目大意:
有N种价值为P,体积为W的货币,放进体积为(F-E)的存钱罐中,求如果恰好装满,装的货币总价值最小是多少;如果装不满,输出This is impossible.
思路:
完全背包,dp[i][j] 表示体积j内放入i种货币最小价值。
dp[i][j] = max(dp[i - 1][j - k * w[i]] + k * v[i], dp[i-1][j])
tle,优化为01背包,每次放入第i种的前一状态的体积都是 j - w[i],滚动为一维数组
i: 1 - N
dp[j] = max(dp[j - w[i]] + v[i], dp[j])
记得初始化所有状态为INF
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 10010;
const int maxm = 510;
const int INF = 0x77777777;
int dp[maxn];
int v[maxm],w[maxm];
int t,N,m,n;
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d",&n,&m,&N);
int d = m - n;
for(int i = 1; i <= N; i++)
{
scanf("%d%d",&v[i],&w[i]);
}
memset(dp,0x77,sizeof(dp));
dp[0] = 0;
for(int i = 1; i <= N; i++)
{
for(int j = w[i]; j <= d; j++)
{
dp[j] = min(dp[j-w[i]] + v[i],dp[j]);
}
}
if(dp[d] == INF) printf("This is impossible.\n");
else printf("The minimum amount of money in the piggy-bank is %d.\n",dp[d]);
}
}