PCA(主成分分析)及源码

本文详细介绍了PCA(主成分分析)这一数据降维方法的工作原理及应用过程。PCA通过线性变换将原始数据转化为各维度线性无关的形式,用于提取数据主要特征。文章包括PCA的步骤说明,并附带了具体的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PCA算法: 
若有m个样本,每个样本的维数为n, 矩阵这里写图片描述 
(1)将X的每一列进行零均值,即减去该列的均值; 
(2)求协方差矩阵这里写图片描述 
(3)求协方差矩阵C的特征值与特征向量; 
(4)将特征值从大到小的顺序对应的特征向量排成矩阵,取前K行组成矩阵P; 
(5)Y=PX为矩阵X从n维降到K维的数据。 
PCA代码:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Drawing;
using System.Text;
using Emgu.CV.UI;
using Emgu.CV;
using Emgu.Util;

namespace DecreaseFeaturePCA
{
   public class PCA
    {
       Matrix<float> sample;
       public PCA(Matrix<float> s)
       {
           sample = s;
       }
       public void DoPCA(out Matrix<float> eigVects,out Matrix<float>eigValues)
       {
           int sampleNum = sample.Rows;
           int sampleDim = sample.Cols;
           //计算样本矩阵每一个维度的均值
           Matrix<float> mean = new Matrix<float>(1, sampleDim);
           for (int i = 0; i < sampleDim; i++)
           {
               for (int j = 0; j < sampleNum; j++)
               {
                   mean[0, i] += sample[j, i];
               }
               mean[0, i] /= sampleNum;
           }
           //对样本矩阵进行零均值化
           for (int i = 0; i < sampleNum; i++)
           {
               for (int j = 0; j < sampleDim; j++)
               {
                   sample[i, j] = sample[i, j] - mean[0, j];
               }
           }
           //计算协方差矩阵
           Matrix<float> Cov = new Matrix<float>(sampleDim, sampleDim);
           Matrix<float> sample_transpose=sample.Transpose();
           Cov=sample_transpose*sample;
           Cov._Mul(1.0 / sampleNum);
           //计算协方差矩阵的特征值和特征向量
           eigVects = new Matrix<float>(sampleDim, sampleDim);
           eigValues=new Matrix<float> (sampleDim,sampleDim);
           Matrix<float> U=new Matrix<float> (sampleDim,sampleDim);
           CvInvoke.cvSVD(Cov.Ptr, eigValues.Ptr, U.Ptr, eigVects.Ptr, Emgu.CV.CvEnum.SVD_TYPE.CV_SVD_V_T);
       }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53

讲PCA原理很详细的一篇文章: 
[http://www.360doc.com/content/13/1124/02/9482_331688889.shtmlhttp 
[http://blog.sina.com.cn/s/blog_59d470310100j7f1.html


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值