HEX
Time Limit: 4 Sec Memory Limit: 128 MB
Submit: 6 Solved: 4
[Submit][Status][Discuss]
Description
On a plain of hexagonal grid, we define a step as one move from the current grid to the lower/lower-left/lower-right grid. For example, we can move from (1,1) to (2,1), (2,2) or (3,2).
In the following graph we give a demonstrate of how this coordinate system works.
Your task is to calculate how many possible ways can you get to grid(A,B) from gird(1,1), where A and B represent the grid is on the B-th position of the A-th line.
Input
For each test case, two integers A (1<=A<=100000) and B (1<=B<=A) are given in a line, process till the end of file, the number of test cases is around 1200.
Output
For each case output one integer in a line, the number of ways to get to the destination MOD 1000000007.
Sample Input
1 1
3 2
100000 100000
Sample Output
1
3
1
HINT
Source
山东省第八届ACM程序设计大赛2017.5.7
#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long int
#define mod 1000000007
ll i, x, y, a, b, c, ans;
ll p[112345];
ll n[112345];
ll exgcd(ll a, ll b, ll &x, ll &y)
{
if (!b)
{
x = 1, y = 0;
return a;
}
ll r = exgcd(b, a%b, x, y);
ll temp = x;
x = y;
y = temp - a / b*y;
return r;
}
ll cal(ll a, ll m)
{
ll ans, x, y;
ll gcd = exgcd(a, m, x, y);
if (1 % gcd)
return -1;
x *= 1 / gcd;
m = abs(m);
ans = x%m;
if (ans < 0)
ans += m;
return ans;
}
int main()
{
p[0] = 1;
n[0] = cal(p[0], mod);
for (i = 1;i < 112345; i++)
{
p[i] = (p[i - 1] * i) % mod;
n[i] = cal(p[i], mod);
}
while (cin >> x >> y)
{
ans = c = 0;
a = x - y;
b = x - a - 1;
while (~a&&~b)
{
ans = (ans + p[a + b + c] * n[a] % mod*n[b] % mod*n[c] % mod) % mod;
a--, b--, c++;
}
cout << ans << endl;
}
}
//ll x, y;
//ll C(ll n,ll m)
//{
// ll ans = 1;
// for (int i = m+1; i <= n; i++)
// {
// ans *= i;
// ans %= MOD;
// }
// for (int i = 1; i <= n - m; i++)
// {
// ans /=i;
// ans %= MOD;
// }
// return (ans + MOD) % MOD;
//}
//int main()
//{
// while (cin >> x >> y)
// {
// x = x - y + 1;
// x--;
// y--;
// ll l, s, r;//向左、向下、向右
// ll answer = 1;
// if (x == 0 || y == 0)
// {
// cout << "1" << endl;
// continue;
// }
// for (int i = 0; i <= x; i++)
// {
// l = i;
// s = x - i;
// r = y - s;
// answer += (C(x, i)*C(y , r)) % MOD;
// answer %= MOD;
// }
// answer += MOD;
// answer %= MOD;
// cout << answer << endl;
// }
// return 0;
//}