省SD2017 D HEX【乘法逆元+排列+转化】

本文介绍了一种计算从六边形网格起点到指定位置的所有可能路径数量的方法,并提供了一个具体的算法实现,该算法通过组合数学原理求解路径数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

HEX

Time Limit: 4 Sec Memory Limit: 128 MB
Submit: 6 Solved: 4
[Submit][Status][Discuss]
Description

On a plain of hexagonal grid, we define a step as one move from the current grid to the lower/lower-left/lower-right grid. For example, we can move from (1,1) to (2,1), (2,2) or (3,2).
In the following graph we give a demonstrate of how this coordinate system works.
Your task is to calculate how many possible ways can you get to grid(A,B) from gird(1,1), where A and B represent the grid is on the B-th position of the A-th line.

Input

For each test case, two integers A (1<=A<=100000) and B (1<=B<=A) are given in a line, process till the end of file, the number of test cases is around 1200.

Output

For each case output one integer in a line, the number of ways to get to the destination MOD 1000000007.

Sample Input

1 1
3 2
100000 100000
Sample Output

1
3
1
HINT

Source

山东省第八届ACM程序设计大赛2017.5.7

#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long int 
#define mod 1000000007
ll i, x, y, a, b, c, ans;
ll p[112345];
ll n[112345];
ll exgcd(ll a, ll b, ll &x, ll &y)
{
    if (!b)
    {
        x = 1, y = 0;
        return a;
    }
    ll r = exgcd(b, a%b, x, y);
    ll temp = x;
    x = y;
    y = temp - a / b*y;
    return r;
}
ll cal(ll a, ll m)
{
    ll ans, x, y;
    ll gcd = exgcd(a, m, x, y);
    if (1 % gcd)
        return -1;
    x *= 1 / gcd;
    m = abs(m);
    ans = x%m;
    if (ans < 0)
        ans += m;
    return ans;
}
int main()
{
    p[0] = 1;
    n[0] = cal(p[0], mod);
    for (i = 1;i < 112345; i++)
    {
        p[i] = (p[i - 1] * i) % mod;
        n[i] = cal(p[i], mod);
    }
    while (cin >> x >> y)
    {
        ans = c = 0;
        a = x - y;
        b = x - a - 1;
        while (~a&&~b)
        {
            ans = (ans + p[a + b + c] * n[a] % mod*n[b] % mod*n[c] % mod) % mod;
            a--, b--, c++;
        }
        cout << ans << endl;
    }
}
//ll x, y;

//ll C(ll n,ll m)
//{
//  ll ans = 1;
//  for (int i = m+1; i <= n; i++)
//  {
//      ans *= i;
//      ans %= MOD;
//  }
//  for (int i = 1; i <= n - m; i++)
//  {
//      ans /=i;
//      ans %= MOD;
//  }
//  return (ans + MOD) % MOD;
//}
//int main()
//{
//  while (cin >> x >> y)
//  {
//      x = x - y + 1;
//      x--;
//      y--;
//      ll l, s, r;//向左、向下、向右
//      ll answer = 1;
//      if (x == 0 || y == 0)
//      {
//          cout << "1" << endl;
//          continue;
//      }
//      for (int i = 0; i <= x; i++)
//      {
//          l = i;
//          s = x - i;
//          r = y - s;
//          answer += (C(x, i)*C(y , r)) % MOD;
//          answer %= MOD;
//      }
//      answer += MOD;
//      answer %= MOD;
//      cout << answer << endl;
//  }
//  return 0;
//}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值