HDU 1568(Fibonacci)

本文介绍了一种高效计算斐波那契数列的方法,通过预计算前20个数并使用对数逼近法处理更大数值,实现了对任意位置斐波那契数的快速获取。代码使用C++实现,展示了数学与编程结合的魅力。
#include <iostream>
#include <cmath>
using namespace std;

int main()
{
    int f[21] = { 0,1 }; //前20个Fibonacci数
    for (int i = 2; i < 21; i++)
    {
        f[i] = f[i - 1] + f[i - 2];
    }
    int n;
    double s = (sqrt(5.0) + 1.0) / 2.0;
    while (cin >> n)
    {
        if (n < 21)
        {
            cout << f[n] << endl;
            continue;
        }
        double ans = -0.5 * log(5.0) / log(10.0) + ((double)n) * log(s) / log(10.0);
        ans -= floor(ans);
        ans = pow(10.0, ans);
        while (ans < 1000)
        {
            ans *= 10;
        }
        cout << (int)ans << endl;
    }
    return 0;
}

 

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
### 使用多种编程语言实现输出斐波那契数列的前四项 以下是几种常见编程语言实现输出斐波那契数列前四项的方法: #### C++ 实现 在C++中可以通过简单的循环来计算并打印斐波那契数列的前几项。 ```cpp #include <iostream> using namespace std; int main() { cout << "Fibonacci数列的前4项如下:" << endl; int a = 1, b = 1; // 初始化前两项 cout << a << " " << b << " "; // 打印前两项 for (int i = 1; i <= 2; ++i) { // 计算并打印后续两项 int nextTerm = a + b; cout << nextTerm << " "; a = b; b = nextTerm; } cout << endl; return 0; } ``` 此代码片段基于引用中的逻辑[^1],简化为仅输出前四项。 --- #### Python 实现 Python 提供了一种简洁的方式来生成斐波那契数列。通过列表推导或其他方法可轻松完成任务。 ```python def fibonacci_four_terms(): terms = [1, 1] # 初始两个值 for _ in range(2): # 添加接下来的两项 terms.append(terms[-1] + terms[-2]) return terms[:4] result = fibonacci_four_terms() print("Fibonacci数列的前4项:", result) ``` 上述代码利用了动态数组的概念,类似于引用中的描述[^2],但调整为了只生成四个数值。 --- #### Java 实现 Java 中可以借助 `ArrayList` 来存储和操作斐波那契序列。 ```java import java.util.ArrayList; public class FibonacciFourTerms { public static void main(String[] args) { ArrayList<Integer> fabList = new ArrayList<>(); fabList.add(1); fabList.add(1); for (int i = 2; i < 4; i++) { fabList.add(fabList.get(i - 1) + fabList.get(i - 2)); } System.out.println("Fibonacci数列的前4项:"); for (Integer num : fabList) { System.out.print(num + " "); } } } ``` 这段代码参考了 Java 的实现方式[^5],并对范围进行了修改以便适应当前需求。 --- #### C 实现 对于更基础的语言如C,则可以直接采用数组或者变量交换的方式处理。 ```c #include <stdio.h> void print_fibonacci_first_four() { int first = 1, second = 1; printf("%d %d ", first, second); // 输出前两项目 for(int i = 3; i <= 4; i++) { // 继续计算剩余部分直到第四项为止 int third = first + second; printf("%d ", third); first = second; second = third; } } int main(){ print_fibonacci_first_four(); return 0; } ``` 该版本遵循传统迭代模式构建结果集,并且保持简单明了结构设计思路来自其他例子[^3]^。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值