在图像信息技术被广泛应用的情况下,对图像质量的评估变成一个广泛而基本的问题。由于图像信息相对于其它信息有着无可比拟的优点,因此对图像信息进行合理处理成为各领域中不可或缺的手段。在图像的获取、处理、传输和记录的过程中,由于成像系统、处理方法、传输介质和记录设备等不完善,加之物体运动、噪声污染等原因,不可避免地带来某些图像失真和降质,这给人们认识客观世界、研究解决问题带来很大的困难。
比如,在图像识别中,所采集到的图像质量直接影响识别结果的准确性和可靠性;又如,远程会议和视频点播等系统受传输差错、网络延迟等不利因素影响,都需要在线实时的图像质量监控,以便于服务提供商动态地调整信源定位策略,进而满足服务质量的要求;在军事应用方面,战场监视和打击评估的效果也取决于无人机等航拍设备所采集到的图像或视频的质量。因此,图像质量的合理评估具有非常重要的应用价值。
从有没有人参与的角度区分,图像质量评价方法有主观评价和客观评价两个分支。主观评价以人作为观测者,对图像进行主观评价,力求能够真实地反映人的视觉感知;客观评价方法借助于某种数学模型,反映人眼的主观感知,给出基于数字计算的结果。
图像质量的主观评价
主观评价只涉及人作出的定性评价,它以人为观察者,对图像的优劣作出主观的定性评价。对于观察者的选择一般考虑未受训练的“外行”或者训练有素的“内行”。该方法是建立在统计意义上的,为保证图像主观评价在统计上有意义,参加

图像质量直接影响识别准确性及服务体验,其评价分为主观和客观两种。主观评价依赖于观察者的定性判断,包括绝对评价和相对评价;客观评价则尝试模拟人眼感知,通过计算模型量化图像质量。Imatest和DxO analyzer是知名的客观评价系统,通过综合测试项目评估影像质量。全面的评测环境和测试工具如光源、测试卡对于确保评价准确性至关重要。
最低0.47元/天 解锁文章
399

被折叠的 条评论
为什么被折叠?



