TensorFlow 简明教程(python版)

这是一篇简明的TensorFlow Python教程,涵盖了定义变量、训练过程和模型评分。文章首先介绍了如何导入TensorFlow库并创建占位符变量,接着讲解如何定义模型的权重和偏置。训练部分涉及了交叉熵作为成本函数,并使用梯度下降进行优化。在模型评分环节,解释了如何计算预测准确率。最后,提供了进一步学习TensorFlow的资源链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TensorFlow 简明教程(python版)

*Posted on April 2nd, 2016, by REN Chuangjie

定义变量

为了使用tensorflow,首先我们需要导入它

import tensorflow as tf

对于符号变量,我们新建一个

x = tf.placeholder(tf.float32, [None, 784])

这里x并不是一个特定的值,只是一个占位符,后面我们需要用tensorflow进行计算式,我们会把它作为输入

在模型中,我们需要weights权重和biases偏置,这里就用Variable来处理定义,Variable可以在整个计算过程中modified

w = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))

在新建Variable的同时,我们也初始化了它,然后

y = tf.nn.softmax(tf.matmul(x, w) + b)

这样我们就成功的实现了我们的模型

训练

我们用cross-entropy作为我们的cost function
H_{y’}(y) = -\sum_i y’_i \log(y_i)
y就是我们预测的概率分布,y’是真实的概率分布

为了实现交叉熵,我们需要一个新的占位符来作为正确答案的输入

y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = -tf.reducen_sum(y_ * tf.log(y))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值