这题朴素dp方程应该还是挺好想的。。然后直接朴素dp,O(nmT)写好点就能卡过去了hh。实际上,我们可以用单调队列来优化转移。变成O(nm*k).就是难写的一B。%%%jfy
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 210
#define pa pair<int,int>
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*f;
}
int n,m,sx,sy,kk,dp[N][N],ans=0,tmp[N];
bool mp[N][N];
char s[N];
int main(){
// freopen("a.in","r",stdin);
n=read();m=read();sx=read();sy=read();kk=read();
for(int i=1;i<=n;++i){
scanf("%s",s+1);
for(int j=1;j<=m;++j) if(s[j]=='x') mp[i][j]=1;
}memset(dp,-1,sizeof(dp));dp[sx][sy]=0;
while(kk--){
int xx=read(),len=read(),op=read();len=len-xx+1;
if(op==1){
for(int j=1;j<=m;++j){
for(int i=1;i<=n;++i) tmp[i]=dp[i][j];
deque<int>q;q.push_back(n);
for(int i=n-1;i>=1;--i){
while(!q.empty()&&q.front()>i+len) q.pop_front();
while(!q.empty()&&(tmp[q.back()]==-1||tmp[q.back()]+q.back()-i<tmp[i])) q.pop_back();
q.push_back(i);if(mp[i][j]){q.clear();continue;}
if(tmp[q.front()]!=-1) dp[i][j]=tmp[q.front()]+q.front()-i;
}
}
}
if(op==2){
for(int j=1;j<=m;++j){
for(int i=1;i<=n;++i) tmp[i]=dp[i][j];
deque<int>q;q.push_back(1);
for(int i=2;i<=n;++i){
while(!q.empty()&&q.front()<i-len) q.pop_front();
while(!q.empty()&&(tmp[q.back()]==-1||tmp[q.back()]+i-q.back()<tmp[i])) q.pop_back();
q.push_back(i);if(mp[i][j]){q.clear();continue;}
if(tmp[q.front()]!=-1) dp[i][j]=tmp[q.front()]+i-q.front();
}
}
}
if(op==3){
for(int j=1;j<=n;++j){
memcpy(tmp,dp[j],sizeof(tmp));
deque<int>q;q.push_back(m);
for(int i=m-1;i>=1;--i){
while(!q.empty()&&q.front()>i+len) q.pop_front();
while(!q.empty()&&(tmp[q.back()]==-1||tmp[q.back()]+q.back()-i<tmp[i])) q.pop_back();
q.push_back(i);if(mp[j][i]){q.clear();continue;}
if(tmp[q.front()]!=-1) dp[j][i]=tmp[q.front()]+q.front()-i;
}
}
}
if(op==4){
for(int j=1;j<=n;++j){
memcpy(tmp,dp[j],sizeof(tmp));
deque<int>q;q.push_back(1);
for(int i=2;i<=m;++i){
while(!q.empty()&&q.front()<i-len) q.pop_front();
while(!q.empty()&&(tmp[q.back()]==-1||tmp[q.back()]+i-q.back()<tmp[i])) q.pop_back();
q.push_back(i);if(mp[j][i]){q.clear();continue;}
if(tmp[q.front()]!=-1) dp[j][i]=tmp[q.front()]+i-q.front();
}
}
}
}for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j) ans=max(ans,dp[i][j]);
printf("%d\n",ans);
return 0;
}