R2_F_Teleportation

本文介绍了一种简化农场运输任务的方法,通过使用双向传送门,计算从起点到终点的最短路径。文章提供了一个示例,展示了如何通过计算不同路径的总距离来确定最优解。

Teleportation

time limit per test

15 seconds

memory limit per test

1024 megabytes

input

standard input

output

standard output

One of the farming chores Farmer John dislikes the most is hauling around lots of cow manure. In order to streamline this process, he comes up with a brilliant invention: the manure teleporter! Instead of hauling manure between two points in a cart behind his tractor, he can use the manure teleporter to instantly transport manure from one location to another.

Farmer John’s farm is built along a single long straight road, so any location on his farm can be described simply using its position along this road (effectively a point on the number line). A teleporter is described by two numbers xx and yy, where manure brought to location xxcan be instantly transported to location yy, or vice versa.

Farmer John wants to transport manure from location aa to location bb, and he has built a teleporter that might be helpful during this process (of course, he doesn’t need to use the teleporter if it doesn’t help). Please help him determine the minimum amount of total distance he needs to haul the manure using his tractor.

Input

The first and only line of input contains four space-separated integers: aa and bb, describing the start and end locations, followed by xx and yy, describing the teleporter. All positions are integers in the range 0…1000…100, and they are not necessarily distinct from each-other.

Output

Print a single integer giving the minimum distance Farmer John needs to haul manure in his tractor.

Example

input

Copy

3 10 8 2

output

Copy

3

Note

In this example, the best strategy is to haul the manure from position 3 to position 2, teleport it to position 8, then haul it to position 10. The total distance requiring the tractor is therefore 1 + 2 = 3.

题目大意

给两个点a,b,然后人要从a到b,然后再给两个传送门x,y(双向),问a到b的最短路径。

题目分析

这……水题…………

直接计算a到b的距离,a到x,y到b的距离,a到y,x到b的距离,取最小值就可以了(记得取绝对值)。就一个样例……怎么搞都能过的吧

代码

#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
int main(int argc, char const *argv[]) {
  int x, y, a, b;
  scanf("%d%d%d%d", &a, &b, &x, &y);
  int ans = abs(a - b);
  ans = min(ans, abs(a - x) + abs(b - y));
  ans = min(ans, abs(a - y) + abs(b - x));
  printf("%d\n", ans);
  return 0;
}

考虑柔性负荷的综合能源系统低碳经济优化调度【考虑碳交易机制】(Matlab代码实现)内容概要:本文围绕“考虑柔性负荷的综合能源系统低碳经济优化调度”展开,重点研究在碳交易机制下如何实现综合能源系统的低碳化与经济性协同优化。通过构建包含风电、光伏、储能、柔性负荷等多种能源形式的系统模型,结合碳交易成本与能源调度成本,提出优化调度策略,以降低碳排放并提升系统运行经济性。文中采用Matlab进行仿真代码实现,验证了所提模型在平衡能源供需、平抑可再生能源波动、引导柔性负荷参与调度等方面的有效性,为低碳能源系统的设计与运行提供了技术支撑。; 适合人群:具备一定电力系统、能源系统背景,熟悉Matlab编程,从事能源优化、低碳调度、综合能源系统等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究碳交易机制对综合能源系统调度决策的影响;②实现柔性负荷在削峰填谷、促进可再生能源消纳中的作用;③掌握基于Matlab的能源系统建模与优化求解方法;④为实际综合能源项目提供低碳经济调度方案参考。; 阅读建议:建议读者结合Matlab代码深入理解模型构建与求解过程,重点关注目标函数设计、约束条件设置及碳交易成本的量化方式,可进一步扩展至多能互补、需求响应等场景进行二次开发与仿真验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值