python学习之多线程

python的thread模块是比较底层的模块,python的threading模块是对thread做了一些包装的,可以更加方便的被使用
1、线程理解
线程是调度单位,每个进程一定会有个主线程
2、线程使用流程

  • 创建线程对象
  • 使用线程实例对象的start()开始一个线程
    当调用start()时,才会真正的创建线程,并且开始执行

创建线程有两种方式
(1)、通过是实例化Thread对象,传入执行线程的函数(如下示例代码中的sing函数)
(2)、通过继承Thread的类实现,该类必须从写run方法,run方法就是子线程执行的内容

代码示例:

import threading
from time import sleep,ctime

def sing():
    for i in range(3):
        print("正在唱歌...%d"%i)
        sleep(1)

def dance():
    for i in range(3):
        print("正在跳舞...%d"%i)
        sleep(1)

if __name__ == '__main__':
    print('---开始---:%s'%ctime())

    t1 = threading.Thread(target=sing)
    t2 = threading.Thread(target=dance)

    t1.start()
    t2.start()

    #sleep(5) # 屏蔽此行代码,试试看,程序是否会立马结束?
    print('---结束---:%s'%ctime())

主线程会等待所有子线程执行完才会结束
代码解析:
t1 = threading.Thread(target=sing):target=sing指明子线程到哪执行,如果sing函数有参数,可以通过Thread的args参数传入,但注意应该以元组形式传入

注:
threading.enumerate()可以查看线程数返回值是个元组,至少会有一个主线程

3、线程共享全局变量
线程会共享全局变量,但是容易造成混乱,
4、互斥锁
当多个线程几乎同时修改某一个共享数据的时候,需要进行同步控制,线程同步能够保证多个线程安全访问竞争资源,最简单的同步机制是引入互斥锁。
互斥锁为资源引入一个状态:锁定/非锁定
某个线程要更改共享数据时,先将其锁定,此时资源的状态为“锁定”,其他线程不能更改;直到该线程释放资源,将资源的状态变成“非锁定”,其他的线程才能再次锁定该资源。互斥锁保证了每次只有一个线程进行写入操作,从而保证了多线程情况下数据的正确性。
互斥锁创建流程

# 创建锁
mutex = threading.Lock()
# 锁定
mutex.acquire()
# 释放
mutex.release()

注意:
如果这个锁之前是没有上锁的,那么acquire不会堵塞
如果在调用acquire对这个锁上锁之前 它已经被 其他线程上了锁,那么此时acquire会堵塞,直到这个锁被解锁为止
示例代码:

import threading
import time

g_num = 0

def test1(num):
    global g_num
    for i in range(num):
        mutex.acquire()  # 上锁
        g_num += 1
        mutex.release()  # 解锁

    print("---test1---g_num=%d"%g_num)

def test2(num):
    global g_num
    for i in range(num):
        mutex.acquire()  # 上锁
        g_num += 1
        mutex.release()  # 解锁

    print("---test2---g_num=%d"%g_num)

# 创建一个互斥锁
# 默认是未上锁的状态
mutex = threading.Lock()

# 创建2个线程,让他们各自对g_num加1000000次
p1 = threading.Thread(target=test1, args=(1000000,))
p1.start()

p2 = threading.Thread(target=test2, args=(1000000,))
p2.start()

# 等待计算完成
while len(threading.enumerate()) != 1:
    time.sleep(1)

print("2个线程对同一个全局变量操作之后的最终结果是:%s" % g_num)

上锁解锁过程
当一个线程调用锁的acquire()方法获得锁时,锁就进入“locked”状态。

每次只有一个线程可以获得锁。如果此时另一个线程试图获得这个锁,该线程就会变为“blocked”状态,称为“阻塞”,直到拥有锁的线程调用锁的release()方法释放锁之后,锁进入“unlocked”状态。

线程调度程序从处于同步阻塞状态的线程中选择一个来获得锁,并使得该线程进入运行(running)状态。

总结
锁的好处:

确保了某段关键代码只能由一个线程从头到尾完整地执行
锁的坏处:

阻止了多线程并发执行,包含锁的某段代码实际上只能以单线程模式执行,效率就大大地下降了
由于可以存在多个锁,不同的线程持有不同的锁,并试图获取对方持有的锁时,可能会造成死锁
避免死锁的方式

  • 程序设计时要尽量避免(银行家算法)
  • 添加超时时间等
本系统旨在构建一套面向高等院校的综合性教务管理平台,涵盖学生、教师及教务三个核心角色的业务需求。系统设计着重于实现教学流程的规范化与数据理的自动化,以提升日常教学管理工作的效率与准确性。 在面向学生的功能模块中,系统提供了课程选修服务,学生可依据培养方案选择相应课程,并生成个人专属的课表。成绩查询功能支持学生查阅个人各科目成绩,同时系统可自动计算并展示该课程的全班最高分、平均分、最低分以及学生在班级内的成绩排名。 教师端功能主要围绕课程与成绩管理展开。教师可发起课程设置申请,提交包括课程编码、课程名称、学分学时、课程概述在内的新课程信息,亦可对已开设课程的信息进行更新或撤销。在课程管理方面,教师具备录入所授课程期末考试成绩的权限,并可导出选修该课程的学生名单。 教务作为管理中枢,拥有课程审批与教学统筹两大核心职能。课程设置审批模块负责理教师提交的课程申请,管理员可根据教学计划与资源情况进行审核批复。教学安排模块则负责全局管控,包括管理所有学生的选课最终结果、生成包含学号、姓名、课程及成绩的正式成绩单,并能基于选课与成绩数据,统计各门课程的实际选课人数、最高分、最低分、平均分以及成绩合格的学生数量。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值