素数距离问题

本文深入探讨素数距离问题,研究连续素数之间的间隔模式,揭示素数分布的有趣特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

素数距离问题

时间限制:3000 ms  |  内存限制:65535 KB
难度:2
描述
现在给出你一些数,要求你写出一个程序,输出这些整数相邻最近的素数,并输出其相距长度。如果左右有等距离长度素数,则输出左侧的值及相应距离。
如果输入的整数本身就是素数,则输出该素数本身,距离输出0
输入
第一行给出测试数据组数N(0<N<=10000)
接下来的N行每行有一个整数M(0<M<1000000),
输出
每行输出两个整数 A B.
其中A表示离相应测试数据最近的素数,B表示其间的距离。
样例输入
3
6
8
10
样例输出
5 1
7 1
11 1
 
#include <stdio.h>

int is_prime(int n);
int main(){

	int N, M;
	int i;
	int a, b;

	scanf("%d", &N);
	while(N--){
		scanf("%d", &M);
		if(is_prime(M)){
			printf("%d %d\n", M, 0);
		}
		else{
			for(i = 1; i <= M; i++){
				b = is_prime(i + M);
				a = is_prime(M - i);
				if(a && b){
					printf("%d %d\n", M - i, i);
					break;
				}
				else if(a && !b){
					printf("%d %d\n", M - i, i);
					break;
				}
				else if(!a && b){
					printf("%d %d\n", M + i, i);
					break;
				}
			}
		}
	}
	return 0;
}

int is_prime(int n){
	
	int i;
	if(n == 1 || n < 0)
		return 0;
	if(n == 2){
		return 1;
	}
	if(n % 2 == 0){
		return 0;
	}
	
	for(i = 3; i*i <= n; i += 2){
		if(n % i == 0)
			return 0;
	}
	
	return 1;
}        


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值