题目描述
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as:
a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

方法思路
Approach1:两个递归
class Solution {
//Runtime: 1 ms, faster than 86.76%
//Memory Usage: 37.6 MB, less than 94.33%
public boolean isBalanced(TreeNode root) {
if(root == null || (root.left == null && root.right == null))
return true;
boolean flag = true;
int left_depth = 0, right_depth = 0;
left_depth = maxDepth(root.left);
right_depth = maxDepth(root.right);
if(Math.abs(left_depth - right_depth) > 1)
flag = false;
else
flag = true;
return flag && isBalanced(root.left) && isBalanced(root.right);
}
public int maxDepth(TreeNode root){
if(root == null) return 0;
return Math.max(maxDepth(root.left), maxDepth(root.right)) + 1;
}
}
Approach2:方法一的优化版本,只有一个递归
public class Solution {
//Runtime: 0 ms, faster than 100.00%
//Memory Usage: 40.7 MB, less than 26.71%
private boolean result = true;
public boolean isBalanced(TreeNode root) {
maxDepth(root);
return result;
}
public int maxDepth(TreeNode root) {
if (root == null)
return 0;
int l = maxDepth(root.left);
int r = maxDepth(root.right);
if (Math.abs(l - r) > 1)
result = false;
return 1 + Math.max(l, r);
}
}

本文介绍了一种高效判断二叉树是否平衡的算法。平衡二叉树定义为任意节点的左右子树深度差不超过1的二叉树。文章提供了两种方法:第一种使用两次递归分别计算树的深度和平衡性;第二种为优化版,仅用一次递归同时判断深度与平衡,提高了运行效率。

被折叠的 条评论
为什么被折叠?



