搬砖(二分答案 + 线性规划)

本文介绍了如何解决一个关于搬砖的优化问题,小N需要在n个工地间运输砖头,通过建立一个传送站来减少时间。目标是最小化所有运输任务所需时间的最大值。问题采用二分答案结合线性规划的方法进行求解,并给出了数据范围和样例输入输出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

任重而道远

【问题描述】

燕子飞到温暖的南方去了。

分别后的十年里,小N孤身在家乡生活,迫于生计而找了份搬砖的工作(等等这什么鬼)。

共有n个工地,第i个工地和第i+1个直接相连(1<=i<n),工地1和n并不直接相连。

从工地i走到i+1或者从i+1走到i都需要耗费1点时间。

有m个运输任务,第i个要求小N把砖头从工地L_i运到R_i。

天才的小N有了个绝妙的主意,假如在工地X和Y之间搞个传送站,那么在X可以直接不需要时间地到Y(Y到X也一样)。

因为预算限制,小N最多建一个传送站。

小N想通过合理地放置传送站,使得所有运输任务所需时间的最大值最小。

【输入格式】

    第一行两个整数n,m,分别表示n个工地,m个运输任务。

    接下来m行,其中第i行俩整数L_i,R_i。

【输出格式】

    输出一行,一个整数,表示可能的最小的 任务所需时间最大值。

【输入输出样例】

bricks.in

bricks.out

5 2

1 3

2 4

 

1

【数据范围】
对于前15%的数据,保证n,m<=200

对于接下来10%的数据,保证n<=50,m<=10^5

对于接下来10%的数据,保证n<=1000,m<=1000

对于接下来35%的数据,保证n,m<=10^5,

对于100%的数据,保证n<=10^8,m<=10^5

AC代码:

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;

typedef long long ll;
const int N = 1e5 + 5;
const int oo = 1e9;
struct Node {
	int l, r;
}nd[N];
int n, m;

bool check (int sww) {
	int max1 = oo, max2 = oo;
	int min1 = -oo, min2 = -oo;
	for (int i = 1; i <= m; i++) {
		if (nd[i].r - nd[i].l <= sww) continue;
		max1 = min (max1, nd[i].r + nd[i].l + sww);
		max2 = min (max2, nd[i].r - nd[i].l + sww);
		min1 = max (min1, nd[i].r + nd[i].l - sww);
		min2 = max (min2, nd[i].r - nd[i].l - sww);
	}
	return min1 <= max1 && min2 <= max2;
}

int main () {
	freopen ("bricks.in", "r", stdin);
	freopen ("bricks.out", "w", stdout);
	scanf ("%d%d", &n, &m);
	for (int i = 1; i <= m; i++) {
		int l, r;
		scanf ("%d%d", &l, &r);
		if (l > r) swap (l, r);
		nd[i] = (Node) {l, r};
	}
	int lf = 0, rg = n;
	while (lf < rg) {
		int mid = lf + rg >> 1;
		if (check (mid)) rg = mid;
		else lf = mid + 1;
	}
	printf ("%d", lf);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值