利用Python进行数据分析(10) pandas基础: 处理缺失数据

本文介绍了如何使用Python的Pandas库处理数据集中的缺失值。主要涵盖了两种处理方法:删除包含缺失值的数据行或列,以及用特定值填充缺失项。通过具体的代码示例展示了这些操作的具体实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据不完整在数据分析的过程中很常见。
pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据。
pandas使用isnull()和notnull()函数来判断缺失情况。

对于缺失数据一般处理方法为滤掉或者填充

滤除缺失数据
 
对于一个Series,dropna()函数返回一个包含非空数据和索引值的Series,例如:

对于DataFrame,dropna()函数同样会丢掉所有含有空元素的数据,例如:
 
但是可以指定how='all',这表示只有行里的数据全部为空时才丢弃,例如:
 
如果想以同样的方式按列丢弃,可以传入axis=1,例如:
 
 
填充缺失数据

如果不想丢掉缺失的数据而是想用默认值填充这些空洞,可以使用fillna()函数:
 
如果不想只以某个标量填充,可以传入一个字典,对不同的列填充不同的值:


作者: backslash112 
出处: http://sirkevin.cnblogs.com/ 
GitHub: https://github.com/backslash112/ 
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值