剑指Offer||变态跳台阶

本文分析了一个变态跳台阶问题:一个台阶总共有n级,如果一次可以跳1级到n级,求有多少种跳法。通过递推公式Fib(n)=2*Fib(n-1),n>=3得出结论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

剑指Offer-09 变态跳台阶

题目描述: 一个台阶总共有n级,如果一次可以跳1级,也可以跳2级……也可以跳n级。求总共有多少总跳法,并分析算法的时间复杂度。

分析:

用Fib(n)表示跳上n阶台阶的跳法数。如果按照定义,Fib(0)肯定需要为0,否则没有意义。但是我们设定Fib(0) = 1;n = 0是特殊情况,通过下面的分析就会知道,强制令Fib(0) = 1很有好处。ps. Fib(0)等于几都不影响我们解题,但是会影响我们下面的分析理解。

当n = 1 时, 只有一种跳法,即1阶跳:Fib(1) = 1;

当n = 2 时, 有两种跳的方式,一阶跳和二阶跳:Fib(2) = 2;

到这里为止,和普通跳台阶是一样的。

当n = 3 时,有三种跳的方式,第一次跳出一阶后,对应Fib(3-1)种跳法; 第一次跳出二阶后,对应Fib(3-2)种跳法;第一次跳出三阶后,只有这一种跳法。Fib(3) = Fib(2) + Fib(1)+ 1 = Fib(2) + Fib(1) + Fib(0) = 4;

当n = 4时,有四种方式:第一次跳出一阶,对应Fib(4-1)种跳法;第一次跳出二阶,对应Fib(4-2)种跳法;第一次跳出三阶,对应Fib(4-3)种跳法;第一次跳出四阶,只有这一种跳法。所以,Fib(4) = Fib(4-1) + Fib(4-2) + Fib(4-3) + 1 = Fib(4-1) + Fib(4-2) + Fib(4-3) + Fib(4-4) 种跳法。

当n = n 时,共有n种跳的方式,第一次跳出一阶后,后面还有Fib(n-1)中跳法; 第一次跳出二阶后,后面还有Fib(n-2)中跳法…第一次跳出n阶后,后面还有 Fib(n-n)中跳法。Fib(n) = Fib(n-1)+Fib(n-2)+Fib(n-3)+…+Fib(n-n) = Fib(0)+Fib(1)+Fib(2)+…+Fib(n-1)。

通过上述分析,我们就得到了通项公式:

​ Fib(n) = Fib(0)+Fib(1)+Fib(2)+…+ Fib(n-2) + Fib(n-1)

因此,有 Fib(n-1)=Fib(0)+Fib(1)+Fib(2)+…+Fib(n-2)

两式相减得:Fib(n)-Fib(n-1) = Fib(n-1) =====》 Fib(n) = 2*Fib(n-1) n >= 3

这就是我们需要的递推公式:Fib(n) = 2*Fib(n-1) n >= 3

class Solution {
public:
    int jumpFloorII(int number) {
        //递归
        if(number == 0||number == 1)
            return number;
        return 2*jumpFloorII(number-1);
        //非递归
        int f[number+1];
        f[1] = 1;
        f[2] = 2;
        for(int i=3;i<=number;i++)
        {
            f[i] = 2*f[i-1];
        }
        return f[number];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值