一.实验目的
巩固线性表的数据结构的存储方法和相关操作,学会针对具体应用,使用线性表的相关知识来解决具体问题。
二..实验内容
建立一个由n个学生成绩的顺序表,n的大小由自己确定,每一个学生的成绩信息由自己确定,实现数据的对表进行插入、删除、查找等操作。分别输出结果。
(用双向链表来实现)。
三..源代码
//DoubleList.h文件
#include<iostream> using namespace std; template<class T> struct Node { T data; Node<T> *pNext; Node<T> *pPrior; }; template<class T> class List { private: Node<T> *pHead; Node<T> *pTail; int length; public: List(int length); void traverseList(); void traverseListReturn(); void sortList(); bool insert(int index, T x); bool ChangeList(int postion, int num); //修改链表中指定位置的节点 void ClearList(); int DeleteList(int postion); int GetList(int postion); ~List(); }; template<class T> List<T>::List(int length) { this->length = length; pHead = new Node<T>; pHead->pPrior = NULL; pTail = pHead; for (int i = 0; i < length; i++) { Node<T> *temp = new Node<T>; cout << "Please enter the no." << i + 1 << "Node's data:"; cin >> temp->data; temp->pNext = NULL; temp->pPrior = pTail; pTail->pNext = temp; pTail = temp; } } template<class T> void List<T>::traverseList() { Node<T> *p = pHead->pNext; while (p != NULL) { cout << p->data << " "; p = p->pNext; } cout << endl; } template<class T> void List<T>::traverseListReturn() { Node<T>*p = pTail; while (p->pPrior != NULL) { cout << p->data << " "; p = p->pPrior; } cout << endl; } template<class T> void List<T>::sortList() { Node<T> *p = new Node<T>; Node<T> *q = new Node<T>; T temp; for (p = pHead->pNext; p->pNext != NULL; p = p->pNext) { for (q = p->pNext; q != NULL; q = q->pNext) { if (q->data < p->data) { temp = q->data; q->data = p->data; p->data = temp; } } } } template<class T> bool List<T>::insert(int index, T x) { if (index<1 || index>length) { return false; } Node<T> *p = new Node<T>; p->data = x; Node<T> *q = pHead; for (int i = 0; i < index; i++) { q = q->pNext; } p->pPrior = q->pPrior; q->pPrior->pNext = p; p->pNext = q; q->pPrior = p; length++; return true; } template<class T> bool List<T>::ChangeList(int postion, int num) { Node<T> *p = pHead->pNext; if (postion > length || postion < 1) { return false; } for (int i = 0; i < postion - 1; i++) { p = p->pNext; } p->data = num; } template<class T> void List<T>::ClearList() { Node<T> *q; Node<T> *p = pHead->pNext; while (p != NULL) { q = p; p = p->pNext; delete q; } p = NULL; q = NULL; } template<class T> int List<T>::DeleteList(int postion) { Node<T> *p = pHead->pNext; if (postion > length || postion < 1) { return -1; } for (int i = 0; i < postion - 1; i++) { p = p->pNext; } p->pPrior->pNext = p->pNext; p->pNext->pPrior = p->pPrior; delete p; length--; } template<class T> int List<T>::GetList(int postion) { Node<T> *p = pHead->pNext; if (postion > length || postion < 1) { return -1; } for (int i = 0; i < postion - 1; i++) { p = p->pNext; } return p->data; } template<class T> List<T>::~List() { Node<T> *q; Node<T> *p = pHead->pNext; while (p != NULL) { q = p; p = p->pNext; delete q; } p = NULL; q = NULL; }
//源.cpp
#include"DoubleList.h"
#include<iostream>
using namespace std;
int main(void)
{
List<float> Score(4);
Score.traverseList(); //输入99.5.98.94.5.88,遍历
Score.traverseListReturn(); //逆向遍历
cout << "---------------------------" << endl;
Score.sortList(); //排序
Score.traverseList(); //再次遍历
cout << "---------------------------" << endl;
Score.insert(3, 96); //在第三个位置插入96
Score.traverseList(); //再次遍历
cout << "---------------------------" << endl;
Score.ChangeList(2, 100); //将第二个位置改为100
Score.traverseList(); //再次遍历
cout << "---------------------------" << endl;
Score.sortList(); //排序
Score.traverseList(); //再次遍历
cout << "---------------------------" << endl;
cout << Score.GetList(2) << endl; //获取第二个位置的元素
Score.DeleteList(3); //删除第三个位置的元素
Score.traverseList();//再次遍历
cout << "---------------------------" << endl;
system("pause");
return 0;
}
实验结果如下:
经验证,结果无误
四、实验心得
双向链表的一个特点就是有着prior和next两个指针;在双链表中,求表长、按位查找、按值查找、遍历等操作的实现与单链表基本相同。所以没什么大问题,在插入和删除操作操作时应该注意,把节点的前驱指针和后继指针都连接上,并且要注意指针修改的先后顺序,我就应该修改顺序颠倒而出现错误。
通过这次实验,掌握了双向链表的使用,也更加巩固了对线性表的深入了解。
这篇博客主要介绍了如何使用双向链表实现一个包含学生成绩的线性表,包括插入、删除和查找等操作。博主强调了在进行这些操作时要注意双向链表中前后指针的正确连接,并分享了实验过程中的心得,通过实践加深了对线性表的理解。
3585





