主动学习系列博文:
【Active Learning - 00】主动学习重要资源总结、分享(提供源码的论文、一些AL相关的研究者):https://blog.youkuaiyun.com/Houchaoqun_XMU/article/details/85245714
【Active Learning - 01】深入学习“主动学习”:如何显著地减少标注代价:https://blog.youkuaiyun.com/Houchaoqun_XMU/article/details/80146710
【Active Learning - 02】Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally:https://blog.youkuaiyun.com/Houchaoqun_XMU/article/details/78874834
【Active Learning - 03】Adaptive Active Learning for Image Classification:https://blog.youkuaiyun.com/Houchaoqun_XMU/article/details/89553144
【Active Learning - 04】Generative Adversarial Active Learning:https://blog.youkuaiyun.com/Houchaoqun_XMU/article/details/89631986
【Active Learning - 05】Adversarial Sampling for Active Learning:https://blog.youkuaiyun.com/Houchaoqun_XMU/article/details/89736607
【Active Learning - 06】面向图像分类任务的主动学习系统(理论篇):https://blog.youkuaiyun.com/Houchaoqun_XMU/article/details/89717028
【Active Learning - 07】面向图像分类任务的主动学习系统(实践篇 - 展示):https://blog.youkuaiyun.com/Houchaoqun_XMU/article/details/89955561
【Active Learning - 08】主动学习(Active Learning)资料汇总与分享:https://blog.youkuaiyun.com/Houchaoqun_XMU/article/details/96210160
【Active Learning - 09】主动学习策略研究及其在图像分类中的应用:研究背景与研究意义:https://blog.youkuaiyun.com/Houchaoqun_XMU/article/details/100177750
【Active Learning - 10】图像分类技术和主动学习方法概述:https://blog.youkuaiyun.com/Houchaoqun_XMU/article/details/101126055
【Active Learning - 11】一种噪声鲁棒的半监督主动学习框架:https://blog.youkuaiyun.com/Houchaoqun_XMU/article/details/102417465
【Active Learning - 12】一种基于生成对抗网络的二阶段主动学习方法:https://blog.youkuaiyun.com/Houchaoqun_XMU/article/details/103093810
【Active Learning - 13】总结与展望 & 参考文献的整理与分享(The End…):https://blog.youkuaiyun.com/Houchaoqun_XMU/article/details/103094113
【2013-CVPR】Adaptive Active Learning for Image Classification
阅读时间:
-
20181023:摘要
-
20181024:Related Work
-
20181025:Uncertainty Measure、Information Density Measure、A Combination Framework
-
20181026:all of the left…
衍生的参考资料:
一些需要进一步理解的关键字:
-
prior density:
-
information density:
-
dense region:
-
sparse region:
-
mutual information:is a quantity that measures the mutual dependence of two sets of variables
-
representativeness measure.
-
Gaussian Process Framework:A Gaussian Process is a joint distribution over a (possibly infinite) set of random variables, such that the marginal distribution over any finite subset of variables is multivariate Gaussian.
-
symmetric positive definite Kernel function:对称正定的核函数
论文(2013 - CVPR):
【2013-CVPR】Adaptive Active Learning for Image Classification.pdf
摘要:
近期,主动学习在计算机视觉领域引起广泛的关注。因为主动学习旨在减少时间和花费成本,在此基础上为视觉数据分析提供高质量的标注样本。计算机视觉领域现有的大多数主动学习方法都是应用 Uncertainty 作为样本的筛选策略。虽然 Uncertainty 策略在很多场景下取得了有效的成果,但在"存在大量未标注样本"场景下,效果往往不佳(倾向于离群点)。本研究中,作者尝试提出一种新颖的自适应的主动学习方法,将“information density”和“most uncertainty”等两种策略进行组合,进而筛选出 critical instances 给专家标注,最后对分类模型进行训练。本研究的实验部分包括计算机视觉领域中2个基础的任务:1)object recognition、2)scene recognition,验证本文提出方法的有效性。
阅读感想(hcq):
what the fk:主动学习相关的论文在2013年就登上 CVPR 了,提出了“information density + most uncertainty”的样本筛选策略。后续要仔细研究研究这篇论文的各种细节!【20181023 - 16:08:25】**