直方图在图形处理中很常用,直方图可以统计图像的像素特征分布,用于修改图像显示,修改图像内容,通过比较不同图片的直方图可以识别和跟踪特殊纹理的物体和图像,下面先学习怎么计算图像的直方图。
opencv2提供calchist函数可以方便的计算直方图。
calchist函数头文件 #include <opencv2/imgproc/imgproc.hpp>
calchist函数定义:
CV_EXPORTS void calcHist( const Mat* images, int nimages, const int * channels, InputArray mask, OutputArray hist, int dims, const int * histSize, const float ** ranges, bool uniform= true , bool accumulate= false ); CV_EXPORTS void calcHist( const Mat* images, int nimages, const int * channels, InputArray mask, SparseMat& hist, int dims, const int * histSize, const float ** ranges, bool uniform= true , bool accumulate= false ); CV_EXPORTS_W void calcHist( InputArrayOfArrays images, const vector< int >& channels, InputArray mask, OutputArray hist, const vector< int >& histSize, const vector< float >& ranges, bool accumulate= false );
举例说明函数应用:
Histogram1D::Histogram1D(){ histSize[0] = 256; hranges[0] = 0.0; hranges[1] = 255.0; ranges[0] = hranges; channels[0] = 0; } cv::MatND Histogram1D::getHistogram(const cv::Mat &image){ cv::MatND hist; cv::calcHist(&image, 1, channels, cv::Mat(), hist, 1, histSize, ranges ); return hist; }
函数参数介绍:
const Mat* images //源图像组
int nimages (Number of source arrays) //源图像组图像个数
const int* channels (List of the dims channels used to compute the histogram.) //图像信道
InputArray mask ( Optional mask. If the matrix is not empty, it must be an 8-bit array of the same size as arrays[i]. The non-zero mask elements mark the array elements counted in the histogram.) //可选的掩码,如果不为空,则必须是8-bit数组,而且大小和原图像相同,非零位置为要计算的直方 图区域
OutputArray hist (Output histogram, which is a dense or sparse dims -dimensional array.) //输出直方图数组,稠密或者稀疏,dims维的数组
int dims ( Histogram dimensionality that must be positive and not greater than CV_MAX_DIMS) //处理直方图的维数正数,最大32维,CV_MAX_DIMS是32.
const int* histSize ( Array of histogram sizes in each dimension.) //每一维的直方图的尺寸大小
const float** ranges (Array of the dims arrays of the histogram bin boundaries in each dimension. When the histogram is uniform ( uniform =true), then for each dimension i it is enough to specify the lower (inclusive) boundary of the 0-th histogram bin and the upper(exclusive) boundary for the last histogram bin histSize[i]-1. That is, in case of a uniform histogram each of ranges[i] is an array of 2 elements. When the histogram is not uniform ( uniform=false ), then each of ranges[i] contains histSize[i]+1 elements:. The array elements, that are not between and,are not counted in the histogram.) //直方图每一维的数据大小范围
下面是计算1维图像的直方图:
cv::Mat Histogram1D::getHistogramImage( const cv::Mat &image){ cv::MatND hist = getHistogram(image); double maxVal = 0; double minVal = 0; cv::minMaxLoc(hist,&minVal,&maxVal,0,0); cv::Mat histImg(histSize[0],histSize[0],CV_8U,cv::Scalar(255)); int hpt = static_cast < int >(0.9*histSize[0]); for ( int h =0;h<histSize[0];h++) { float binVal = hist.at< float >(h); int intensity = static_cast < int >(binVal*hpt/maxVal); cv::line(histImg,cv::Point(h,histSize[0]),cv::Point(h,histSize[0]-intensity),cv::Scalar::all(0)); } return histImg; }
源图像:
histogram:
计算H-S直方图分布:
#include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> using namespace cv; void main() { Mat source = imread("baboon.jpg" ); namedWindow("Source" ); imshow("Source" ,source); Mat hsv; cvtColor(source,hsv,CV_BGR2HSV); int hbins = 60,sbins = 64; int histSize[] = {hbins,sbins}; float hranges[] = {0,180}; float sranges[] = {0,255}; const float *ranges[] = {hranges,sranges}; int channels[] = {0,1}; MatND hist; calcHist(&hsv,1,channels,Mat(),hist,2,histSize,ranges); double maxVal = .0; minMaxLoc(hist,0,&maxVal,0,0); int scale = 8; Mat histImg = Mat::zeros(sbins*scale,hbins*scale,CV_8UC3); for ( int h = 0;h < hbins;h++) { for ( int s = 0;s<sbins;s++) { float binVal = hist.at< float >(h,s); int intensity = cvRound(binVal*0.9*255/maxVal); rectangle(histImg,Point(h*scale,s*scale),Point((h+1)*scale-1,(s+1)*scale-1),Scalar::all(intensity),CV_FILLED); } } namedWindow("H-S Histogram" ); imshow("H-S Histogram" ,histImg); imwrite("hshistogram.jpg" ,histImg); waitKey(0); }
源图像:
h-s histogram:
RGB直方图:
#include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> #include <fstream> using namespace cv; using namespace std; void main() { Mat source = imread("baboon.jpg" ); namedWindow("Source" ); imshow("Source" ,source); int channels_r[1],channels_g[1],channels_b[1],histSize[1],range; float hranges[2]; const float *ranges[1]; histSize[0] = 256; hranges[0] = 0.0; hranges[1] = 255.0; ranges[0] = hranges; channels_b[0] = 0; channels_g[0] = 1; channels_r[0] = 2; MatND hist_r,hist_g,hist_b; double max_val_r,max_val_g,max_val_b; Mat histImage(histSize[0],3*histSize[0],CV_8UC3); calcHist(&source,1,channels_r,Mat(),hist_r,1,histSize,ranges); minMaxLoc(hist_r,0,&max_val_r,0,0); calcHist(&source,1,channels_g,Mat(),hist_g,1,histSize,ranges); minMaxLoc(hist_g,0,&max_val_g,0,0); calcHist(&source,1,channels_b,Mat(),hist_b,1,histSize,ranges); minMaxLoc(hist_b,0,&max_val_b,0,0); ofstream outfile1("d:\\r.txt" ); ofstream outfile2("d:\\g.txt" ); ofstream outfile3("d:\\b.txt" ); outfile1<<"max_val_r = " <<max_val_r<<endl; outfile2<<"max_val_g = " <<max_val_g<<endl; outfile3<<"max_val_b = " <<max_val_b<<endl; for ( int i =0;i<histSize[0];i++) { float binVal_r = hist_r.at< float >(i); float binVal_g = hist_g.at< float >(i); float binVal_b = hist_b.at< float >(i); int intensity_r = static_cast < int >(0.9*histSize[0]*binVal_r/max_val_r); outfile1<<i<<" " <<binVal_r<< " " <<intensity_r<<endl; int intensity_g = static_cast < int >(0.9*histSize[0]*binVal_g/max_val_g); outfile2<<i<<" " <<binVal_g<< " " <<intensity_g<<endl; int intensity_b = static_cast < int >(0.9*histSize[0]*binVal_b/max_val_b); outfile3<<i<<" " <<binVal_b<< " " <<intensity_b<<endl; line(histImage,Point(i,histImage.rows),Point(i,histImage.rows-intensity_r),Scalar(0,0,255)); line(histImage,Point(i+histSize[0],histImage.rows),Point(i+histSize[0],histImage.rows-intensity_g),Scalar(0,255,0)); line(histImage,Point(i+histSize[0]*2,histImage.rows),Point(i+histSize[0]*2,histImage.rows-intensity_b),Scalar(255,0,0)); } namedWindow("RGB Histogram" ); imshow("RGB Histogram" ,histImage); imwrite("RGB_Histogram.jpg" ,histImage); waitKey(0); }
源图像:如上图
程序运行结果:
转自 http://blog.youkuaiyun.com/skeeee/article/details/8979811